Featured Research

from universities, journals, and other organizations

A Biomolecule As A Light Switch

Date:
September 30, 2005
Source:
Max Planck Society
Summary:
Researchers at the Max Planck Institute for Biophysical Chemistry in Goettingen, Germany have uncovered the molecular mechanism of switchable fluorescent proteins, able to switch themselves reversibly back-and-forth between an "on" and "off" state. The discovery could be of importance for, among other purposes, optical data storage in protein crystals.

Snakelocks Anemone (Anemonia sulcata).
Credit: Image : Richard Lockett

Switchable fluorescent proteins - able to switch themselvesreversibly back-and-forth between an "on" and "off" state - have beenknown for only a few years. However, they already hold promise for alarge number of novel applications, from cellular biology to datastorage. Cell biologists, X-Ray crystallographers, photobiophysicists,and computer-biophysicists from Goettingen have worked together on aproject uncovering the molecular mechanism by which a fluorescentprotein becomes switched (PNAS, September 13, 2005). This knowledgecould be of importance for, among other purposes, optical data storagein protein crystals.

Related Articles


The fluorescent protein identified asasFP595 is found on the ends of the tentacles of the snakelocks anemoneAnemonia sulcata, a type of coral which lives in the Mediterranean Seaand North Atlantic, in the areas near the surface of the water, whichare flushed with light (see Fig. 1). In the tentacle ends, this proteinprobably protects the anemone’s tissue from solar rays that are toostrong. asFP595 absorbs green light and eventually emits redfluorescent light. When another light is applied to it, the protein canbe switched back-and-forth between a fluorescent and non-fluorescentstate. It is a so called "molecular light switch."

Theresearchers from Goettingen have uncovered the mechanism behind thismolecular switch. They fabricated the protein in bacteria, and then,from the purified protein, cultivated crystals that still had theswitching characteristics of the free protein. X-ray structuralanalysis and computer simulations showed that the chromophore - thepart of the protein that absorbs the light - changes structure when itis lit up using a cis-trans isomerisation. The chromophore does what iscalled a "hula twist", changing its position merely 3x10-10 m - a third of a billionth of a meter. This tiny change is enough to turn the fluorescent protein into a non-fluorescent one.

Basedon this knowledge, the researchers want to hone the protein with thegoal of using it in various applications. They range fromhighest-resolution microscopy all the way to optical data storage inprotein crystals.



Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "A Biomolecule As A Light Switch." ScienceDaily. ScienceDaily, 30 September 2005. <www.sciencedaily.com/releases/2005/09/050930083711.htm>.
Max Planck Society. (2005, September 30). A Biomolecule As A Light Switch. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2005/09/050930083711.htm
Max Planck Society. "A Biomolecule As A Light Switch." ScienceDaily. www.sciencedaily.com/releases/2005/09/050930083711.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins