Featured Research

from universities, journals, and other organizations

Nanoscientists Provide New Picture Of Semiconductor Material

Date:
October 5, 2005
Source:
Ohio University
Summary:
For almost a decade, scientists thought they understood the surface structure of cubic gallium nitride, a promising new crystalline semiconductor. Research by an interdisciplinary team of nanoscientists from Ohio University and the Universitat Auṭnoma de Barcelona, however, turns that idea on its head.

Experimental (a) and theoretical (b) images of cubic GaN surface, together with top view atomic model (c) based on theory. Nitrogen and gallium atoms are indicated. (Art by: Arthur Smith)

ATHENS, Ohio — For almost a decade, scientists thought theyunderstood the surface structure of cubic gallium nitride, a promisingnew crystalline semiconductor. Research by an interdisciplinary team ofnanoscientists from Ohio University and the Universitat Auṭnoma deBarcelona, however, turns that idea on its head.

Their studypublished in the Sept. 30 online issue of the journal Physical ReviewLetters provides a fresh – and they argue, more accurate – look at thesurface structure of the crystalline material, which could be used inlasers and other electronic devices.

Nancy Sandler, an assistantprofessor of physics and astronomy at Ohio University, and PabloOrdejón, a Barcelona professor specializing in the algorithm used inthe project, calculated several properties using the currently acceptedmodel and obtained new images of the crystal’s surface.Experimentalists Hamad Al-Brithen and his Ph.D. adviser Arthur Smith,Ohio University associate professor of physics and astronomy, recentlyhad used scanning tunneling microscopy to capture an image of thesurface.

When they compared the model image with the experimentalimage, the researchers found that the theory and the experiment aligned– except for one important detail. Researchers previously thought thatthe atoms on the surface were arranged in groups of four in onedirection but only one in the other. The new finding shows that theyare in groups of four in one direction but in groups of three in theother direction, Smith said. The discrepancy calls into question themodel scientists have accepted for the last seven years and theunderstanding of the surface structure.

The surface of thematerial is not easy to work with, Smith noted, because it’s sensitiveto how scientists handle it. A different structure could be createdsimply by exposing the crystalline surface to other elements. Forexample, the accidental contact of arsenic (an element commonly used insemiconductor growth) with the crystal surface has affected otherresearchers’ data in the past.

“The relevance of modelingsurfaces is that the ordering of atoms on a surface can besubstantially different from the one in the bulk of the material,”Sandler said.

The new research could help scientists learn how touse cubic gallium nitride as a new semiconductor for lasers and otherelectronic devices such as display technologies and bright bluelight-emitting diode (LED) applications. It also may help them growlayers of the material more precisely to create technologicalapplications. But before scientists can make use of this potentiallyvaluable material, they first must understand its basic properties sothey can begin tackling its drawbacks, said Smith, director of OhioUniversity’s Nanoscale and Quantum Phenomena Institute.

“Cubicgallium nitride is more difficult to grow [than the popular hexagonaltype of gallium nitride crystal],” said Smith. “But its cubicproperties make it more compatible with other commonly used materials,and so it has more potential for integration into mainstream devices.”

Theresearch was supported by grants from the National Science Foundationand Spain’s Ministry of Science and Technology and its Ministry ofEducation and Science.

This project is the first major paperpublished by Ohio University’s Nanoscale Interdisciplinary ResearchTeam, a collaboration of researchers funded by the NSF.


Story Source:

The above story is based on materials provided by Ohio University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio University. "Nanoscientists Provide New Picture Of Semiconductor Material." ScienceDaily. ScienceDaily, 5 October 2005. <www.sciencedaily.com/releases/2005/10/051005071428.htm>.
Ohio University. (2005, October 5). Nanoscientists Provide New Picture Of Semiconductor Material. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2005/10/051005071428.htm
Ohio University. "Nanoscientists Provide New Picture Of Semiconductor Material." ScienceDaily. www.sciencedaily.com/releases/2005/10/051005071428.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) — Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins