Featured Research

from universities, journals, and other organizations

Presto! It's A Semiconductor -- Researchers Transform The Properties Of Matter With Tunable Quantum Dots

Date:
October 5, 2005
Source:
University of Pennsylvania
Summary:
Researchers at the University of Pennsylvania may not have turned lead into gold as alchemists once sought to do, but they did turn a quantum dot -- nanoscale crystals -- from an insulator to a semiconductor. Their findings represent a key step towards the fabrication of functional nanocrystal-based devices and circuits.

Researchers at the University of Pennsylvania may not have turned leadinto gold as alchemists once sought to do, but they did turn lead andselenium nanocrystals into solids with remarkable physical properties.In the October 5 edition of Physical Review Letters, online now,physicists Hugo E. Romero and Marija Drndic describe how they developedam artificial solid that can be transformed from an insulator to asemiconductor.

The Penn physicists are among many modern researchers who have beenexperimenting with a different way of transforming matter throughartificial solids, formed from closely packed nanoscale crystals, alsocalled "quantum dots."

"Essentially, we're forming artificial solids from artificial atoms --about 10 times larger than real atoms -- whose properties we can finetune on the quantum level," said Drndic, an assistant professor inPenn's Department of Physics and Astronomy. "Artificial solids areexpected to revolutionize the fabrication of electronic devices in thenear future, but now we are only beginning to understand theirfundamental behavior."

Artificial solids, in general, are constructed by specificallyassembling a number of nanocrystals, each composed of only a fewthousand atoms, into a closely packed and well-ordered lattice.Previous researchers have demonstrated that quantum dots can bemanipulated to change their physical properties, particularly theiroptical properties. In fact, the blue laser, which will soon be putinto use into commercial products, was a result of early research inchanging the colors of quantum dots.

"Many of the physical parameters of these crystals, such as theircomposition, particle size and interparticle coupling, represent knobsthat can be individually controlled at nanometer scales," Drndic said."Variation of any of these parameters translates directly into eithersubtle or dramatic changes in the collective electronic, optical andmagnetic response of the crystal. In this case were able to adjust itselectrical properties."

In their study, Drndic and her colleagues looked at the ability ofartificial solids to transport electrons. They demonstrated that, bycontrolling the coupling of artificial atoms within the crystal, theycould increase the electrical conductivity of the entire crystal.According to the researchers, this system promises the possibility ofdesigning artificial solids that can be switched through a variety ofelectronic phase transitions, with little influence from the localenvironment. Their findings represent a key step towards thefabrication of functional nanocrystal-based devices and circuits.

Quantum dots are more than simply analogous to individual atoms; theyalso demonstrate quantum effects, like atoms, but on a larger scale. Asa tool for research, quantum dots make it possible for physicists tomeasure, firsthand, some things only described in theory.

"It is this versatility in both experiment and theory that canpotentially turn these quantum dot solids into model systems forachieving a general understanding of the electronic structure ofsolids," Drndic said. "Not only are we making strides in creating afuture generation of electronics, but in doing so we are also getting adeeper understanding of the fundamental properties of matter."

###

This research was funded through grants from the National Science Foundation and the Office of Naval Research.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania. "Presto! It's A Semiconductor -- Researchers Transform The Properties Of Matter With Tunable Quantum Dots." ScienceDaily. ScienceDaily, 5 October 2005. <www.sciencedaily.com/releases/2005/10/051005071549.htm>.
University of Pennsylvania. (2005, October 5). Presto! It's A Semiconductor -- Researchers Transform The Properties Of Matter With Tunable Quantum Dots. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2005/10/051005071549.htm
University of Pennsylvania. "Presto! It's A Semiconductor -- Researchers Transform The Properties Of Matter With Tunable Quantum Dots." ScienceDaily. www.sciencedaily.com/releases/2005/10/051005071549.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins