Featured Research

from universities, journals, and other organizations

Precision Bonding Makes Tiny High Performance Actuators Possible

Date:
October 5, 2005
Source:
Penn State
Summary:
Using a new precision bonding process they developed, Penn State researchers have designed and fabricated tiny new piezoelectric microactuators -- the largest only a hair's breadth wide -- based on coupling commercially available materials with existing micromachining technology.

Some possible applications of the new Penn State piezoelectric microactuator.
Credit: Image courtesy of Penn State

Using a new precision bonding process they developed, Penn State researchers have designed and fabricated tiny new piezoelectric microactuators -- the largest only a hair's breadth wide -- based on coupling commercially available materials with existing micromachining technology.

The new actuators promise to be low cost, and capable of providing controlled force, high resolution and large displacements appropriate for applications in RF switches for cell phones, for example, or optical switches for wide screen TVs. Other potential applications include microfluidic pumps and valves, micromanipulators for nanoscale handling and atomic force microscope drives.

Dr. Srinivas A. Tadigadapa, associate professor of electrical engineering and a developer of the bonding process and microactuator, says, "These new piezoelectric microactuators are the first realized using microfabrication methods, a mature technology used to make computer chips and micromachines from silicon-based materials. Our new low temperature wafer bonding techniques, which make the actuators possible, can also be used for precision integration of dissimilar materials in other micro-electro-mechanical systems."

The new actuators and bonding process are described in a paper, Fabrication and performance of a flextensional microactuator, which appears in the current online edition of the Journal of Micromechanics and Microengineering (JMM). The paper will also be featured in the October print version of JMM.

The authors are Jongpil Cheong, who earned his doctorate at Penn State this year, Abhijat Goyal, a doctoral candidate in electrical engineering, Dr. Tadigadapa and Dr. Christopher D. Rahn, professor of mechanical engineering.

The new actuators are made from flat strips of bulk PZT, a commercially available piezoelectric material that shrinks slightly when a voltage is applied to it, and a precision micromachined silicon beam. Bonding the silicon beam to the PZT amplifies and converts the PZT shape change into a convex deflection when the silicon beam buckles as the PZT shrinks.

In operation in the actuator, the measured deflection of the silicon beam shows a gain factor of 20 with respect to the PZT dimensional change.

For the bonding process in fabricating the new actuators, the Penn State researchers use photolithography and low temperature solders to produce the distinctive bridge shape they need.

Dr. Tadigadapa notes, "The PZT depoles if you heat it too high. Therefore, the temperature is crucial. A low temperature solder bonding process at 200 C was used in this work."

Using their new approach, the researchers have fabricated actuators with dimensions ranging from 350 to 600 microns in length, 50 to 100 microns (about the width of a human hair) in width, and 5 to 6 microns in thickness.

In tests, the actuators showed good repeatability with a large amplitude stroke of about 8 microns when actuated using -100V to 100V. The bandwidth of the actuator was measured at 265 KHz.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Precision Bonding Makes Tiny High Performance Actuators Possible." ScienceDaily. ScienceDaily, 5 October 2005. <www.sciencedaily.com/releases/2005/10/051005074345.htm>.
Penn State. (2005, October 5). Precision Bonding Makes Tiny High Performance Actuators Possible. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2005/10/051005074345.htm
Penn State. "Precision Bonding Makes Tiny High Performance Actuators Possible." ScienceDaily. www.sciencedaily.com/releases/2005/10/051005074345.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Air Force: $4.2B Saved from Grounding A-10s

Air Force: $4.2B Saved from Grounding A-10s

AP (Apr. 23, 2014) Speaking about the future of the United States Air Force, Chief of Staff Gen. Mark Welsh says the choice to divest the A-10 fleet was logical and least impactful. (April 23) Video provided by AP
Powered by NewsLook.com
Jets Fuel Jump in Boeing's Revenue

Jets Fuel Jump in Boeing's Revenue

Reuters - Business Video Online (Apr. 23, 2014) A sharp rise in revenue for commercial jets offset a decline in Boeing's defense business. And a big increase in deliveries lifted profitability. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins