Featured Research

from universities, journals, and other organizations

Marine Snail's Neural Network Sheds Light On The Basis For Flexible Behavior

Date:
October 12, 2005
Source:
Cell Press
Summary:
From snail to man, one of the hallmarks of the brain is the ease with which behavioral variants are generated--for example, humans can easily walk with different stride lengths or different speeds. By studying how a relatively simple motor network of the marine snail Aplysia produces variants of a particular feeding behavior, researchers have found that the ability to generate a large number of behavioral variants stems from the elegant hierarchical architecture of the brain's motor network.

By studying how a relatively simple motor network of the marine snail Aplysia produces variants of a particular feeding behavior, researchers have found that the ability to generate a large number of behavioral variants stems from the elegant hierarchical architecture of the brain's motor network.
Credit: Timothy Kang, Jin-sheng Wu and Jian Jing

From snail to man, one of the hallmarks of thebrain is the ease with which behavioral variants are generated--forexample, humans can easily walk with different stride lengths ordifferent speeds. By studying how a relatively simple motor network ofthe marine snail Aplysia produces variants of a particular feedingbehavior, researchers have found that the ability to generate a largenumber of behavioral variants stems from the elegant hierarchicalarchitecture of the brain's motor network.

Related Articles


Most motor systems are organized into a hierarchy of at leasttwo layers of neurons, with higher-order neurons acting on lower-orderneurons, which form a small number of building blocks or modules thatproduce a variety of behaviors. However, it was not clear how variantsof a single motor act are generated in such a hierarchical system.

In the new work, Jian Jing and Klaudiusz Weiss of the MountSinai School of Medicine in New York studied the feeding network ofAplysia, which exhibits a biting behavior in response to the presenceof food. The researchers showed that within the feeding network, twohigher-order neurons that are active during biting behavior employ acombinatorial mechanism to produce variations in one particularmovement parameter of the biting behavior. The researchers showed that,tellingly, these higher-order neurons accomplish their roles throughtheir specific actions on two groups of lower-order interneurons thatdirectly influence the particular biting-behavior movement parameter.Therefore, in this system, and likely others, the generation of largenumbers of behavioral variants is characterized by higher-order neuronsthat flexibly combine an "alphabet system" of outputs that aregenerated by lower-order modules within the brain's motor network.

###

The researchers included Jian Jing and Klaudiusz R. Weiss of MountSinai School of Medicine in New York, NY. This work was supported bygrants from National Institute of Mental Health.

Jing et al.: "Generation of Variants of a Motor Act in aModular and Hierarchical Motor Network." Publishing in Current Biology,Vol. 15, 1712-1721, October 11, 2005. DOI 10.1016/j.cub.2005.08.051 www.current-biology.com


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Marine Snail's Neural Network Sheds Light On The Basis For Flexible Behavior." ScienceDaily. ScienceDaily, 12 October 2005. <www.sciencedaily.com/releases/2005/10/051011072450.htm>.
Cell Press. (2005, October 12). Marine Snail's Neural Network Sheds Light On The Basis For Flexible Behavior. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2005/10/051011072450.htm
Cell Press. "Marine Snail's Neural Network Sheds Light On The Basis For Flexible Behavior." ScienceDaily. www.sciencedaily.com/releases/2005/10/051011072450.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins