Featured Research

from universities, journals, and other organizations

It Whistles: Change In Pitch Tells All In This New Sonic Gas Analyzer

Date:
October 24, 2005
Source:
Penn State
Summary:
Penn State researchers have developed a prototype sonic gas analyzer that automatically and continuously tracks the concentration of a gas in an air/gas mixture based on changes in pitch.

Components of the new Penn State sonic gas analyzer. The sample chamber (bottle) is connected to the analyzer cell (resonator) by a sealed fan (pump) that circulates the gas mixture through the system.
Credit: Image courtesy of Penn State


Penn State researchers have developed a prototype sonic gas analyzer that automatically and continuously tracks the concentration of a gas in an air/gas mixture based on changes in pitch.

Miguel Horta, doctoral candidate in acoustics who is currently working on the sonic gas analyzer as part of his dissertation, says, "The system automatically cancels out the background and flow noise and can detect changes in gas concentration as low as 0.003 percent -- plenty sensitive enough, for example, to let you know if you've got an explosive mixture."

The Penn State researchers are developing the current prototype to track continuously the concentrations of hydrogen produced by bacteria in microbial fuel cells (MFC). In MFCs, bacteria feed on the organic matter in wastewater and produce hydrogen for use as fuel while simultaneously cleaning the water.

However, the researchers say their new system also could be adapted for tracking toxic or flammable gases in mines, sewers or landfills, for hydrogen detectors in battery compartments of boats and electric cars or in industries where gases are consumed as feedstocks.

Horta will detail the system and his measurements on helium, sulfur hexafluoride and hydrogen produced by non-bacterial sources in a talk set for Oct. 19 at the Acoustical Society of America/Society of Noise Control Engineers (ASA/Noise-Con 2005) in Minneapolis, Minn. His presentation is titled Sonic Gas Analyzer for Microbiological Metabolic Measurements. His co-author is his thesis adviser, Dr. Steven Garrett, the United Technologies Corp. professor of acoustics.

Garrett explains that, in the Penn State sonic gas analyzer, a miniature speaker produces a tone barely audible outside the resonator that sounds like a whistle. Two tiny microphones capture the tone, called a resonance frequency, and the two-microphone outputs are then subtracted to double the signal of interest and cancel any extraneous noise before being fed to an electronic tracking system, called a phase-locked loop. This tracking system determines the changes in the resonance frequency caused by the changes in gas concentration, while simultaneously correcting for any changes in the gas temperature.

Horta adds, "If the concentration of a gas in the gas/air mixture passing through the system changes, the new concentration will affect the sound's speed which will, in turn, change the resonance frequency. That change in resonance frequency or pitch, as detected by the microphones and tracking system, tells us what the change in gas concentration is at every instant without disturbing the system or requiring extraction of gas samples."

Sonic gas analyzers can be used in the same applications as thermal conductivity analyzers, the researchers point out. However, since the sonic gas analyzer only introduces sound, it doesn't change the temperature of the gas mixture, as do thermal conductivity analyzers.

Garrett notes, "Keeping the temperature unaltered by external devices is crucial to obtaining detailed information about the gas mixture in a microbial fuel cell without affecting the bacteria."

Horta's measurements on helium, sulfur hexafluoride, and hydrogen show an immediate response by the analyzer to the introduction of a contaminating gas. The necessary time for the gases to become thoroughly mixed within the system varies from approximately 30 seconds for lighter gases like helium and hydrogen to about one minute for the heavier sulfur hexafluoride. Once the gases are mixed, the resonance frequency is stable to about 0.02 Hz, corresponding to a concentration resolution on the order of 30 parts-per-million.

The absolute accuracy of the change in frequency has an uncertainty of about 0.13 Hz for sulfur hexafluoride and 0.6 Hz for helium, corresponding to absolute accuracies in concentration of 0.015 percent and 0.02 percent respectively. In the case of hydrogen, the uncertainty of a concentration measurement is 0.118 percent.

Garrett explains, "An uncertainty of 0.1 percent means that, if we measure a concentration of, say, two percent of helium in air, our statistical error analysis tells us that the value is, for sure, between 1.9 percent and 2.1 percent."

The researchers are working on modifications in the design of the analyzer to further improve the accuracy of the measurements.

The research project is supported by the endowment for the United Technologies Corporation Professorship that Garrett holds.

###

To hear an audio demo of the sonic gas analyzer go to: http://www.personal.psu.edu/users/m/a/mah471/gas_analysis_demo_clip.htm



Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "It Whistles: Change In Pitch Tells All In This New Sonic Gas Analyzer." ScienceDaily. ScienceDaily, 24 October 2005. <www.sciencedaily.com/releases/2005/10/051024084141.htm>.
Penn State. (2005, October 24). It Whistles: Change In Pitch Tells All In This New Sonic Gas Analyzer. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2005/10/051024084141.htm
Penn State. "It Whistles: Change In Pitch Tells All In This New Sonic Gas Analyzer." ScienceDaily. www.sciencedaily.com/releases/2005/10/051024084141.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins