Featured Research

from universities, journals, and other organizations

Slippery When Wet: Fluids Race Through Nearly Frictionless Carbon Nanotubes

Date:
November 17, 2005
Source:
National Science Foundation
Summary:
Within the cells of our bodies, fluids flow rapidly through miniscule, nearly frictionless, protein channels. Until now, human-made nanoscale structures have not been able to mimic those same speeds because the fluids flow slowly along the walls of the tiny structures. Researchers have now found that carbon nanotubes only 7 billionths of a meter in diameter can channel many fluids nearly friction free.

In this illustration, water travels through carbon nanotubes at a rate 10,000 to 100,000 times faster than models predict.
Credit: M. Denomme, University of Kentucky

Within the cells of our bodies, fluids flow rapidly through miniscule, nearly frictionless, protein channels. Until now, human-made nanoscale structures have not been able to mimic those same speeds because the fluids flow slowly along the walls of the tiny structures.

Researchers have now found that carbon nanotubes only 7 billionths of a meter in diameter can channel many fluids nearly friction free. With some fluids, the interiors of the tubes were so slippery that substances sailed through 10,000-100,000 times faster than models had predicted.

For the experiments, chemical and materials engineers Bruce Hinds, a National Science Foundation CAREER awardee, Mainak Majumder, Nitin Chopra and Rodney Andrews of the University of Kentucky fabricated membranes made from billions of aligned carbon nanotubes. The fabrication techniques easily adapt to large-scale production, which is important for industries that could use such membranes for separating commodity chemicals.

Hinds and his colleagues crafted the membranes so that each side can have different chemical properties. As a result, the selective membrane could one day be used to deliver drugs through the skin or in specialized chemical sensors.

The findings appeared in the Oct. 3, 2005, issue of the journal Nature.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Slippery When Wet: Fluids Race Through Nearly Frictionless Carbon Nanotubes." ScienceDaily. ScienceDaily, 17 November 2005. <www.sciencedaily.com/releases/2005/11/051117114309.htm>.
National Science Foundation. (2005, November 17). Slippery When Wet: Fluids Race Through Nearly Frictionless Carbon Nanotubes. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2005/11/051117114309.htm
National Science Foundation. "Slippery When Wet: Fluids Race Through Nearly Frictionless Carbon Nanotubes." ScienceDaily. www.sciencedaily.com/releases/2005/11/051117114309.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins