Featured Research

from universities, journals, and other organizations

Building A Better Hydrogen Trap

Date:
November 21, 2005
Source:
University of Michigan
Summary:
Using building blocks that make up ordinary plastics, but putting them together in a whole new way, University of Michigan researchers have created a class of lightweight, rigid polymers they predict will be useful for storing hydrogen fuel. The trick to making the new materials, called covalent organic frameworks (COFs), was coaxing them to assume predictable crystal structures -- something that never had been done with rigid plastics.

Crystalline sheets produced in covalent organic frameworks (COFs).
Credit: Adrien Côté

Using building blocks that make up ordinary plastics, but putting them together in a whole new way, University of Michigan researchers have created a class of lightweight, rigid polymers they predict will be useful for storing hydrogen fuel.

The work is described in today's (Nov. 17) issue of the journal Science.

The trick to making the new materials, called covalent organic frameworks (COFs), was coaxing them to assume predictable crystal structures---something that never had been done with rigid plastics.

"Normally, rigid plastics are synthesized by rapid reactions that randomly cross-link polymers," said postdoctoral fellow Adrien Côté, who is first author on the Science paper. "Just as in anything you might do, if you do it really fast, it can get disorganized." For that reason, the exact internal structures of such materials are poorly understood, making it difficult to predict their properties. But Côté and colleagues tweaked reaction conditions to slow down the process, allowing the materials to crystallize in an organized fashion instead of assembling helter skelter.

As a result, the researchers can use X-ray crystallography to determine the structure of each type of COF they create and, using that information, quickly assess its properties.

"Once we know the structure and properties, our methodology allows us to go back and modify the COF, making it perform better or tailoring it for different applications," said Côté.

Côté collaborated on the work with Omar Yaghi, who is the Robert W. Parry Collegiate Professor of Chemistry at U-M. Over the past 15 years, Yaghi has taken a similar approach to producing materials called metal-organic frameworks (MOFs). On the molecular level, MOFs are scaffolds made up of metal hubs linked together with struts of organic compounds. By carefully choosing and modifying the chemical components used as hubs and struts, Yaghi and his team have been able to define the angles at which they connect and design materials with the properties they want.

Like MOFs, COFs can be made highly porous to increase their storage capacity. But unlike MOFs, COFs contain no metals. Instead, they're made up of light elements – hydrogen, boron, carbon, nitrogen and oxygen – that form strong links (covalent bonds) with one another.

"Using light elements allows you to generate lightweight materials," said Côté. "That's very important for hydrogen fuel storage, because the lighter the material, the more economical it is to transport around in a vehicle. The strong covalent bonds also make COFs very robust materials." Although the main thrust of the current research is creating materials for gas storage in fuel cells, Côté, Yaghi and colleagues also are exploring variations of COFs that might be suitable for use in electronic devices or catalytic applications.

"This is the first step to what we think is going to be a very large and useful class of materials," Côté said.

###

Côté and Yaghi collaborated on the research with assistant professor of chemistry Adam Matzger and graduate students Annabelle Benin and Nathan Ockwig, all of U-M, and Michael O'Keeffe of Arizona State University. The work was funded by the National Science Foundation, the U.S. Department of Energy and the Natural Sciences and Engineering Research Council of Canada.

For more information:

Omar Yaghi---http://www.umich.edu/%7Emichchem/faculty/yaghi/

Science magazine---http://www.sciencemag.org/

For an in-depth look at the research of Omar Yaghi, in whose lab this work was done, visit: http://www.umich.edu/news/index.html?Releases/2005/Nov05/yaghi


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan. "Building A Better Hydrogen Trap." ScienceDaily. ScienceDaily, 21 November 2005. <www.sciencedaily.com/releases/2005/11/051119103053.htm>.
University of Michigan. (2005, November 21). Building A Better Hydrogen Trap. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2005/11/051119103053.htm
University of Michigan. "Building A Better Hydrogen Trap." ScienceDaily. www.sciencedaily.com/releases/2005/11/051119103053.htm (accessed August 2, 2014).

Share This




More Matter & Energy News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) — The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) — Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) — The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins