Featured Research

from universities, journals, and other organizations

Snapshots At The Atomic Border: How Atoms Interact At The Interface Between A Liquid Metal And A Crystal

Date:
November 29, 2005
Source:
Max-Planck-Gesellschaft
Summary:
Semiconductor technology has long existed at the nanoscale; circuits in computer chips are nowadays only a few dozen nanometres wide (one nanometre = one millionth of a millimetre).

A drop of liquid aluminium at the interface with crystal aluminium oxide. The interactions at the interface, displayed in picture 1B, were investigated with an electron microscope.
Credit: Image : Max Planck Institute for Metals Research

Semiconductor technology has long existed at the nanoscale; circuits in computer chips are nowadays only a few dozen nanometres wide (one nanometre = one millionth of a millimetre). In order to manufacture chips optimally, we need a comprehensive understanding of every process and phenomenon that takes place at the atomic level - in particular at the interface between solid and liquid materials. Scientists from the Max Planck Institute for Metals Research in Stuttgart and the Israel Institute of Technology in Haifa have now been able to observe atomic processes at the interface between liquid aluminium and solid aluminium oxide (sapphire). Using high voltage electron microscopy, they were able to show that crystals are able to order the atoms in neighbouring liquid metals, even at high temperatures. The results are important for procedures such as the wetting of joints in nanoscale "soldering" (Science, 28 October 2005).

When non-specialists think of sapphire, they imagine a shimmering blue semi-precious stone - used, for example, as the needle on a record player. For scientists, however, the sapphire is also a particular form of aluminium oxide (α-Al203, also: corundum). A very stabile aluminium oxide, sapphire is used in many fields of technology. In semiconductor technology, for example, it insulates electronic components. In this and many other technological processes (e.g., solidification, crystal growing, and lubrication), the production process is being optimised and carried out at increasingly smaller dimensions. Therefore it is important to know what interactions take place at an atomic level, at the interface between solid and liquid materials.

The interest in basic research into the structure and phenomena at solid-liquid interfaces has grown ever since x-ray diffraction studies, and atomic computer simulations, showed a high concentration of density fluctuations in the liquid phase at the interface. The Max Planck scientists investigated these processes more closely using a high-resolution transmission electron microscope, choosing liquid aluminium and the solid ceramic α-Al203 in crystallised form (Sapphire). They brought this material system under a high voltage electron microscope with a resolution of 0.12 nanometre at a temperature of 850 degrees Celsius, above the melting point of aluminium (660 degrees Celsius).

The transmission electron microscope JEM-ARM 1250, JEOL, in Stuttgart, is one of the highest resolution machines of its kind in the world. The Max Planck scientists used this microscope to show, for the first time, that the density of atoms in liquid aluminium is not uniform right at the interface. There are, indeed, density fluctuations. By making small changes to the experimental conditions, the researchers were also able to observe both the growth of the sapphire from liquid aluminium, and the interfacial transport of oxygen atoms.

The researchers captured the reaction on video at 25 frames per second, with cogent results unimpaired by artefact effects. The recordings showed how liquid aluminium atoms order themselves on the crystal interface. It also became possible to see that the interface develops dynamically and that the crystal grows in layers. The researchers infer from this that crystals can induce the ordering of atoms in liquids - even in metal-ceramic systems at high temperatures.

The results could be useful for "soldering processes at the nanoscale", thus having future implications for the production of memory chips.


This project was supported by the Max Planck Society, the German-Israel Fund, the German Research Foundation (research training group "inner border layers") and the Russell Berrie Nanotechnology Institute in Technion, Israel.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Max-Planck-Gesellschaft. "Snapshots At The Atomic Border: How Atoms Interact At The Interface Between A Liquid Metal And A Crystal." ScienceDaily. ScienceDaily, 29 November 2005. <www.sciencedaily.com/releases/2005/11/051129182157.htm>.
Max-Planck-Gesellschaft. (2005, November 29). Snapshots At The Atomic Border: How Atoms Interact At The Interface Between A Liquid Metal And A Crystal. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2005/11/051129182157.htm
Max-Planck-Gesellschaft. "Snapshots At The Atomic Border: How Atoms Interact At The Interface Between A Liquid Metal And A Crystal." ScienceDaily. www.sciencedaily.com/releases/2005/11/051129182157.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins