Featured Research

from universities, journals, and other organizations

Magnetic Transistor Could 'Dial In' Quantum Effects

Date:
December 13, 2005
Source:
Rice University
Summary:
A team of theoretical and experimental physicists from Rice University is preparing a unique probe in hopes of "dialing in" elusive quantum states called "quantum criticalities." The team is using nanotechnology to create a probe capable of trapping and tuning a single electron to create the rarified physical state. The probe, a transistor thousands of times smaller than a cell, is described online this week in the Proceedings of the National Academy of Sciences.

A team of theoretical and experimental physicists from Rice University is preparing a unique probe in hopes of "dialing in" elusive quantum states called "quantum criticalities." The team is using nanotechnology to create a probe capable of trapping and tuning a single electron to create the rarified physical state in nearby magnetic electrodes.

Related Articles


The probe, a transistor thousands of times smaller than a living cell, is described in research published online this week by the Proceedings of the National Academy of Sciences.

"The traditional theory of metals, which has held sway for 50 years and has fostered terrific technological advances in computing and materials science, breaks down completely in matter that exists in a 'quantum critical state,'" said Qimiao Si, professor of physics and astronomy at Rice and the lead theoretician on the project. "Previous experiments indicate that quantum criticality is characterized by the inherent quantum effect of entanglement, and the nanoscale magnetic probe we've proposed could provide a controlled and tunable setting to study entanglement at a quantum critical point."

The term "quantum critical point" refers to a phase transition. Just as water goes through a phase transition when it turns to ice or steam, all matter is subject to phase transitions due to fluctuations produced by the peculiar forces of quantum mechanics.

The probe proposed by Si and colleagues is based on a transistor with an active channel measuring just a few billionths of meter across. The transistor also uses a pair of electrodes made of ferromagnetic metal. The researchers plan to trap a single electron in the active channel between the electrodes. Then, they will capitalize on a uniquely quantum effect -- the tendency of a trapped electron to "tunnel," or wink out of existence in one place and appear in another -- to establish a quantum critical state in the metallic electrodes that trap the tiny particle.

"In principle, we can use the gate voltage in this setup to tune the physical state," said Douglas Natelson, assistant professor of physics and astronomy and of electrical and computer engineering. "We should be able to move the system from a quantum critical state and back again, simply by turning the knob on the voltage. That's a level of precision that's never been possible in another experimental system, and it's really nanotechnology -- the control of matter at the atom-by-atom level -- that will make it possible."

Elementary particles like electrons have an intrinsic angular momentum known as spin. The probe's design will allow the physicists to confine an electron with its spin on one molecule inside the transistor. In one quantum state, the tunneling effect causes the constrained electron spin to become "entangled" with the spins of electrons in the nearby metal electrodes. The magnetic nature of the electrodes also dictates the existence of a collective oscillation among the spins of electrons in the electrodes. These oscillations -- known as "spin waves" -- will interact with the magnetic moment of the constrained electron's spin and try to break the entanglement. The quantum critical point occurs when it is broken and the material transitions from one quantum phase to the next.

Natelson has already used the technique to study electron spin in similar molecules while using non-magnetic gold metal electrodes. Results of those experiments are due to be published shortly in the journal Physical Review Letters.

"The usage of the ferromagnetic electrodes in the proposed probe brings in spin waves, which couple to the local magnetic moment of the molecule as a fluctuating magnetic field," said theorist and co-author Stefan Kirchner, a postdoctoral fellow of physics and astronomy at Rice. "It is this coupling that gives rise to the ability to tune the degree of -- and even destroy -- the magnetic quantum entanglement."

The effect is manifested in the unique way that the electrical conductance of the transistor depends on temperature and frequency.

Though nano in scale, the new probe serves as a realistic model system to elucidate physics that cannot be explained by the traditional theory of metals, including phenomena associated with bulk materials like rare-earth-based heavy fermion metals and copper-based high temperature superconductors. For example, the nanoprobe allows the physicists to introduce competition between two quantum effects -- magnetic quantum entanglement and coupling with spin waves. By accessing the quantum critical point that lies at the phase change associated with these competing forces, the researchers can draw a direct linkage between the quantum criticality in the new probe and quantum criticalities in bulk materials like heavy fermion metals.

In a 2001 paper in Nature, Si and collaborators offered a new theory regarding a similar destruction of the magnetic quantum entanglement that appears at the quantum critical point of heavy fermion metals. The new probe could provide direct experimental evidence of this proposed effect.

"Based on previous experiments and theoretical predications, the new probe should provide us with much-anticipated evidence about the precise way that quantum criticality forms in nature," Si said. "With this unique experimental data, we hope to gain an in-depth understanding of the phenomena that may well be what engineers need in order to harness the power for high-temperature superconductivity."

###

The research was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft), the Robert A. Welch Foundation, the National Science Foundation, the Alfred P. Sloan Foundation and the David and Lucille Packard Foundation. Co-authors on the study include Kirchner, Si, Natelson and Lijun Zhu of the University of California at Riverside.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Magnetic Transistor Could 'Dial In' Quantum Effects." ScienceDaily. ScienceDaily, 13 December 2005. <www.sciencedaily.com/releases/2005/12/051213073643.htm>.
Rice University. (2005, December 13). Magnetic Transistor Could 'Dial In' Quantum Effects. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2005/12/051213073643.htm
Rice University. "Magnetic Transistor Could 'Dial In' Quantum Effects." ScienceDaily. www.sciencedaily.com/releases/2005/12/051213073643.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) — A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com
3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

Buzz60 (Oct. 23, 2014) — New York City officials announce a new technology initiative for the NYPD. Tim Minton reports smartphones and tablets will be given to more than 40,000 NYPD officers and detectives in an effort to change the way they perform their duties. Video provided by Buzz60
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins