Featured Research

from universities, journals, and other organizations

Researchers Make Long DNA 'Wires' For Future Medical And Electronic Devices

Date:
December 19, 2005
Source:
Ohio State University
Summary:
Ohio State University researchers have invented a process for uncoiling long strands of DNA and forming them into precise patterns. Ultimately, these DNA strands could act as wires in biologically based electronics and medical devices, said L. James Lee, professor of chemical and biomolecular engineering at Ohio State University.

DNA strands fluoresce in these microscope images from Ohio State University . Researchers here have invented a process for uncoiling DNA strands and forming them into precise patterns – a prelude to biologically based electronics and medical devices. The squares in the lower right image measure approximately 10 micrometers (millionths of a meter) across.
Credit: Image courtesy of Ohio State University

Ohio State University researchers have invented a process for uncoiling long strands of DNA and forming them into precise patterns.

Related Articles


Ultimately, these DNA strands could act as wires in biologically based electronics and medical devices, said L. James Lee, professor of chemical and biomolecular engineering at Ohio State University.

In the early online edition of the Proceedings of the National Academy of Sciences, Lee and postdoctoral researcher Jingjiao Guan describe how they used a tiny rubber comb to pull DNA strands from drops of water and stamp them onto glass chips.

Other labs have formed very simple structures with DNA, and those are now used in devices for gene testing and medical diagnostics. But Lee and Guan are the first to coax strands of DNA into structures that are at once so orderly and so complex that they resemble stitches on a quilt.

“These are very narrow, very long wires that can be designed into patterns for molecular electronics or biosensors,” Lee said. “And in our case, we want to try to build tools for gene delivery, DNA recombination, and maybe even gene repair, down the road.”

The longest strands are one millimeter (thousandths of a meter) long, and only one nanometer (billionths of a meter) thick. On a larger scale, positioning such a long, skinny tendril of DNA is like wielding a human hair that is ten meters (30 feet) long. Yet Lee and Guan are able to arrange their DNA strands with nanometer precision, using relatively simple equipment.

In this patent-pending technology, the researchers press the comb into a drop of water containing coils of DNA molecules. Some of the DNA strands fall between the comb's teeth, so that the strands uncoil and stretch out along the surface of the comb as it is pulled from the water.

They then place the comb on a glass chip surface. Depending on how they place the comb, they leave behind strands of different lengths and shapes.

“Basically, we're doing nanotechnology using only a piece of rubber and a tiny droplet of DNA solution,” Guan said.

Computer chips that bridge the gap between the electronic and the biological could make detection of certain chemicals easier, and speed disease diagnosis. But first, researchers must develop technologies to mass produce DNA circuits as they produce chip circuits today.

The technique that Lee and Guan used is similar to a relatively inexpensive chip-making technology called soft lithography, where rubber molds press materials into shape.

In this study, they arranged the DNA into rows of “stitches,” pinstripes and criss-cross shapes.

The pinstripes presented the researchers with a mystery: for some reason, thorn-like structures emerged along the strands at regular intervals.

“We think the ‘thorns' may be used as interconnects between nanowires, or they could connect the nanowires with other electronic components,” Guan said. “We are not trying to eliminate them, because we do not think they are defects. We also believe their formation is controllable, because they are almost completely absent in some experiments but abundant in others. Although we currently do not know exactly how the thorns form, maybe new and useful nanostructures may be created if we can better understand and control this process.”

The university will license the technology for further development. Lee and Guan are working on their first application – building the wires into sensors for detecting disease biomarkers. In the meantime, they are collaborating with researchers in the Department of Electrical and Computer Engineering at Ohio State to measure the electrical properties of the DNA wires. They are also using this technique to produce DNA-based nanoparticles for gene delivery.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Researchers Make Long DNA 'Wires' For Future Medical And Electronic Devices." ScienceDaily. ScienceDaily, 19 December 2005. <www.sciencedaily.com/releases/2005/12/051218112409.htm>.
Ohio State University. (2005, December 19). Researchers Make Long DNA 'Wires' For Future Medical And Electronic Devices. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2005/12/051218112409.htm
Ohio State University. "Researchers Make Long DNA 'Wires' For Future Medical And Electronic Devices." ScienceDaily. www.sciencedaily.com/releases/2005/12/051218112409.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins