Featured Research

from universities, journals, and other organizations

New Procedure Reveals The Secrets Of The Brain

Date:
December 26, 2005
Source:
Max Planck Society
Summary:
Scientists from the MPI for Biological Cybernetics in Tübingen have developed a new procedure which accurately maps the activity in primate brains by means of the BOLD-Signal (Blood Oxygen Level Dependent Signal). The combination of electrical microstimulation and FMRT promises substantially more precise insights into the functional organisation or the brain and its circuitry.

Activity patterns in the brain elicited by electrical microstimulation are observed around the electrode and in other functionally connected visual areas. Functional magnetic resonance imaging was used to measure activation.
Credit: Image : Max Planck Institute for Biological Cybernetics

Scientists from the MPI for Biological Cybernetics in Tübingen have developed a new procedure which accurately maps the activity in primate brains by means of the BOLD-Signal (Blood Oxygen Level Dependent Signal). The combination of electrical microstimulation and FMRT promises substantially more precise insights into the functional organisation or the brain and its circuitry. (Neuron, December 22, 2005).

Over the last two centuries electrical microstimulation has been often used to demonstrate causal links between neural activity and specific behaviors or cognitive functions. It has also been used successfully for the treatment of several neurological disorders, most notably, Parkinson's disease. However, to understand the mechanisms by which electrical microstimulation can cause alternations in behaviors and cognitive functions it is imperative to characterize the cortical activity patterns that are elicited by stimulation locally around the electrode and in other functionally connected areas.

To this end, in a new study published in the December, 2005, issue of Neuron, Andreas S. Tolias and Fahad Sultan, under the guidance of Prof. Nikos K. Logothetis from the Max Planck Institute for Biological Cybernetics in Tübingen, have for the first time developed a technique to record brain activity using the blood oxygen level dependent (BOLD) signal while applying electrical microstimulation to the primate brain. They found that the spread of activity around the electrode in macaque area V1 is larger than expected from calculations based on passive spread of current and therefore may reflect functional spread by way of horizontal connections. Consistent with this functional transsynaptic spread they also obtained activation in expected projection sites in extrastriate visual areas demonstrating the utility of their technique in uncovering in vivo functional connectivity maps.

Using the microstimulation/MRI technique in conscious, alert primates holds great promise for determining the causal relationships between activation patterns across distributed neuronal circuits and specific behaviors. Finally, this method could also proof useful in understanding and optimising the method of intra-cranial electrical stimulation in the treatment of neurological diseases.

 


Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "New Procedure Reveals The Secrets Of The Brain." ScienceDaily. ScienceDaily, 26 December 2005. <www.sciencedaily.com/releases/2005/12/051226101333.htm>.
Max Planck Society. (2005, December 26). New Procedure Reveals The Secrets Of The Brain. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2005/12/051226101333.htm
Max Planck Society. "New Procedure Reveals The Secrets Of The Brain." ScienceDaily. www.sciencedaily.com/releases/2005/12/051226101333.htm (accessed April 25, 2014).

Share This



More Mind & Brain News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Marijuana Use Lead To Serious Heart Problems?

Could Marijuana Use Lead To Serious Heart Problems?

Newsy (Apr. 24, 2014) — A new study says marijuana use could lead to serious heart-related complications. Video provided by Newsy
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) — A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) — NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com
Do We Get Nicer With Age?

Do We Get Nicer With Age?

Newsy (Apr. 22, 2014) — A recent report claims personality can change over time as we age, and usually that means becoming nicer and more emotionally stable. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins