Featured Research

from universities, journals, and other organizations

Deciphering The Mystery Of Bee Flight

Date:
January 12, 2006
Source:
California Institute Of Technology
Summary:
One of the most elusive questions in science has finally been answered: How do bees fly? Although the issue is not as profound as how the universe began or what kick-started life on earth, the physics of bee flight has perplexed scientists for more than 70 years.

For more than 70 years, scientists have been trying to figure out how bees' haphazard and aerodynamically unsound flapping can keep the hefty bugs aloft. Caltech's Michael H. Dickinson and his postdoc Douglas L. Altshuler and their colleagues have finally figured it out, using a combination of high-speed digital photography to snap freeze-frame images of bees in motion, and a giant robotic mock-up of a bee wing.
Credit: Image courtesy of California Institute Of Technology

One of the most elusive questions in science has finally been answered: How do bees fly?

Although the issue is not as profound as how the universe began or what kick-started life on earth, the physics of bee flight has perplexed scientists for more than 70 years. In 1934, in fact, French entomologist August Magnan and his assistant Andrι Sainte-Lague calculated that bee flight was aerodynamically impossible. The haphazard flapping of their wings simply shouldn't keep the hefty bugs aloft.

And yet, bees most certainly fly, and the dichotomy between prediction and reality has been used for decades to needle scientists and engineers about their inability to explain complex biological processes.

Now, Michael H. Dickinson, the Esther M. and Abe M. Zarem Professor of Bioengineering, and his postdoctoral student Douglas L. Altshuler and their colleagues at Caltech and the University of Nevada at Las Vegas, have figured out honeybee flight using a combination of high-speed digital photography, to snap freeze-frame images of bees in motion, and a giant robotic mock-up of a bee wing. The results of their analysis appear in the November 28 issue of the Proceedings of the National Academy of Sciences.

"We're no longer allowed to use this story about not understanding bee flight as an example of where science has failed, because it is just not true," Dickinson says.

The secret of honeybee flight, the researchers say, is the unconventional combination of short, choppy wing strokes, a rapid rotation of the wing as it flops over and reverses direction, and a very fast wing-beat frequency.

"These animals are exploiting some of the most exotic flight mechanisms that are available to insects," says Dickinson.

Their furious flapping speed is surprising, Dickinson says, because "generally the smaller the insect the faster it flaps. This is because aerodynamic performance decreases with size, and so to compensate small animals have to flap their wings faster. Mosquitoes flap at a frequency of over 400 beats per second. Birds are more of a whump, because they beat their wings so slowly."

Being relatively large insects, bees would be expected to beat their wings rather slowly, and to sweep them across the same wide arc as other flying bugs (whose wings cover nearly half a circle). They do neither. Their wings beat over a short arc of about 90 degrees, but ridiculously fast, at around 230 beats per second. Fruit flies, in comparison, are 80 times smaller than honeybees, but flap their wings only 200 times a second.

When bees want to generate more power--for example, when they are carting around a load of nectar or pollen--they increase the arc of their wing strokes, but keep flapping at the same rate. That is also odd, Dickinson says, because "it would be much more aerodynamically efficient if they regulated not how far they flap their wings but how fast "

Honeybees' peculiar strategy may have to do with the design of their flight muscles.

"Bees have evolved flight muscles that are physiologically very different from those of other insects. One consequence is that the wings have to operate fast and at a constant frequency or the muscle doesn't generate enough power," Dickinson says.

"This is one of those cases where you can make a mistake by looking at an animal and assuming that it is perfectly adapted. An alternate hypothesis is that bee ancestors inherited this kind of muscle and now present-day bees must live with its peculiarities," Dickinson says.

How honeybees make the best of it may help engineers in the design of flying insect-sized robots: "You can't shrink a 747 wing down to this size and expect it to work, because the aerodynamics are different," he says. "But the way in which bee wings generate forces is directly applicable to these devices."


Story Source:

The above story is based on materials provided by California Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

California Institute Of Technology. "Deciphering The Mystery Of Bee Flight." ScienceDaily. ScienceDaily, 12 January 2006. <www.sciencedaily.com/releases/2006/01/060111082100.htm>.
California Institute Of Technology. (2006, January 12). Deciphering The Mystery Of Bee Flight. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2006/01/060111082100.htm
California Institute Of Technology. "Deciphering The Mystery Of Bee Flight." ScienceDaily. www.sciencedaily.com/releases/2006/01/060111082100.htm (accessed September 1, 2014).

Share This




More Plants & Animals News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) — An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) — In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins