Featured Research

from universities, journals, and other organizations

Mayo Collaboration Identifies Gene In Childhood Kidney Disease

Date:
January 19, 2006
Source:
Mayo Clinic
Summary:
An international research collaboration led by Mayo Clinic has identified a new gene involved in causing the inherited kidney disorder, Meckel-Gruber syndrome (MKS). Children with MKS have central nervous system deformities as well as abnormal cysts in their kidneys, and usually die shortly after birth. The findings appear in the current edition of Nature Genetics.

An international research collaboration led by Mayo Clinic has identified a new gene involved in causing the inherited kidney disorder, Meckel-Gruber syndrome (MKS). Children with MKS have central nervous system deformities as well as abnormal cysts in their kidneys, and usually die shortly after birth. The findings appear in the current edition of Nature Genetics. In addition to Mayo Clinic, the collaboration involved researchers from the Indiana University School of Medicine in Indianapolis, and the University of Birmingham, England.

Significance of the Finding

This news is of immediate importance to MKS families who may now have their blood screened for the defect and seek genetic counseling. The finding also is important for advancing understanding of what goes wrong in common birth defects, such as neural tube defects, as well as for related disorders such as more common forms of polycystic kidney disease (PKD). PKD accounts for more than 5 percent of end-stage kidney disease in the United States and Europe.

"This gene has immediate relevance for a small number of families, but the broader implications are important for the understanding they bring of how cysts develop in the kidney," explains Peter Harris, Ph.D., the Mayo Clinic nephrology researcher who led the research team. "There is a kind of common linkage among these diseases. Our hope is that this new finding will aid us to devise new treatments for a broad category of disabling disease."

Meckel-Gruber kidney disease is separate from, though related to, PKD in that some of the same things go wrong to cause the abnormal formation of cysts that disrupt kidney function. Knowing the identity of one key gene involved in MKS is a first step to understanding the disorder and eventually devising therapies to blunt its effects. Treatments are being developed for the more common forms of polycystic kidney disease.

The current work is an extension of Mayo researchers' groundbreaking work for more than a decade that has helped to reveal the genetic basis of PKD and to develop therapies. In that time, Mayo researchers have identified key genes driving the most common form of the disease in adults and in infants.

Method: From Rat to Humans

The research collaboration brought together Mayo's expertise in polycystic disease genetics with an animal model characterized in Indiana: a rat that mimicked PKD but that also showed symptoms of abnormal brain development. These clinical characteristics linked to a gene made this a useful model for an atypical form of PKD. The researchers identified the neighborhood in the model's genome where the error likely occurred, ultimately finding one gene that was defective. They then looked at the same neighborhood in the human genome for evidence of a disease with symptoms similar to the model (the bottom of chromosome 8) and found Meckel-Gruber syndrome type 3 (MKS3). Screening the corresponding gene, they identified similar changes in the MKS3 patients (characterized by the Birmingham group) and identified the disease gene.

Collaboration and Support

In addition to Mayo researchers, investigators from 12 other institutions were part of the research team. They are listed in the article on the Nature Genetics Web site. The team was supported by grants from the National Institutes of Health, the Polycystic Kidney Disease Foundation, Mayo Clinic, the Wellcome Trust, the United Kingdom Birth Defect Foundation, University of Birmingham Medical School Scientific Projects and Birmingham Women's Hospital Research Fund.

Story Source:

The above story is based on materials provided by Mayo Clinic. Note: Materials may be edited for content and length.


Cite This Page:

Mayo Clinic. "Mayo Collaboration Identifies Gene In Childhood Kidney Disease." ScienceDaily. ScienceDaily, 19 January 2006. <www.sciencedaily.com/releases/2006/01/060118100022.htm>.
Mayo Clinic. (2006, January 19). Mayo Collaboration Identifies Gene In Childhood Kidney Disease. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2006/01/060118100022.htm
Mayo Clinic. "Mayo Collaboration Identifies Gene In Childhood Kidney Disease." ScienceDaily. www.sciencedaily.com/releases/2006/01/060118100022.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins