Featured Research

from universities, journals, and other organizations

Engineers Develop Smallest Device To Control Light, Advance Silicon Technology

Date:
January 26, 2006
Source:
University of Texas at Austin
Summary:
An electrical engineer at the University of Texas at Austin has made a laser light blink while passing through a miniaturized silicon chip, a major step toward developing commercially viable optical interconnects for high performance computers and other devices.

Electrical engineer Ray Chen adjusts settings before testing the silicon modulator, which is on the microscope stage at right, below the lens of the microscope (black cylinder).
Credit: Photo by Jennie Trower

An electrical engineer at the University of Texas at Austin has made a laser light blink while passing through a miniaturized silicon chip, a major step toward developing commercially viable optical interconnects for high performance computers and other devices.

Researchers for decades have sought to harness light as a messenger on silicon chips because light can move thousands of times faster through solid materials than electrons and can carry more information at once, while requiring less energy.

Ray Chen, a professor of electrical engineering, and graduate students Wei Jiang, YongQiang Jiang and Lanlan Gu created a chip made of silicon “photonic crystals” whose complex internal structure slowed light traveling through the chip. The laser light slowed down enough that a small electric current could alter, or modulate, the pattern of light transmission.

“We were able to get our new silicon modulator to control the transmission of laser light, while using 10 times less power than normally needed for silicon modulators,” said Chen, who holds the Temple Foundation Endowed Faculty Fellowship No. 4.

He will give an invited talk about the latest update on the miniaturized device on Jan. 25, at the Optoelectronics 2006 Symposia of the SPIE Photonics West Conference in San Jose, Calif.

For light to encode meaningful information, its intensity or other characteristics need to be modulated, just as air that passes through a person’s vocal cords is modulated to produce speech sounds by actions that include moving the lips and tongue. Because Chen was able to modify light using electric current, which itself is modifiable, he expects to be able to modulate the light to blink on and off at different rates, or to change in intensity.

Once such silicon modulators are combined with lasers on a silicon platform, these optical chips could become a mainstay of consumer electronic devices, telecommunication systems, biosensors and other devices. In computers, the light-modulating chips would primarily serve to send information between a computer’s microprocessors and its memory, a process called interconnection.

“In a Pentium 4, over 50 percent of the computer’s power is consumed by interconnection,” Chen said.

Other advantages of optical chips based on silicon photonic crystals would include their reduced risk of overheating due to lower power needs, the ability to fabricate optical chips primarily with traditional mass-production practices in a silicon foundry and the expected smaller size of optical modulators and other optical silicon elements of the future.

Chen initially published findings on the silicon modulator in the Nov. 28, 2005, issue of the journal Applied Physics Letters. That article described how less than 3 milliwatts of power was needed for light modulation. The length of the special silicon chip the light needed to travel before being modifiable was 80 micrometers (.08 millimeters). That is about 10 times shorter than the best conventional silicon optical modulators. Smaller components help drive manufacturing costs down,and also transmit signals faster.

The shortened length was possible because Chen’s laboratory designed the silicon photonic crystals that are the key component of the modulator to have large regions of regularly spaced, nanosize holes that light would have to traverse. Navigating the Swiss cheese-like regions of the crystals, called line defects, slowed the light’s passage considerably.

Since the November publication, Chen’s laboratory has continued evaluating the specialized silicon chips and learning how to change the blinking rate of laser light traversing their silicon modulator.

This research is supported by the U.S. Air Force Office of Scientific Research. Jiang is now a research scientist at Omega Optics Inc. in Austin, Texas.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas at Austin. "Engineers Develop Smallest Device To Control Light, Advance Silicon Technology." ScienceDaily. ScienceDaily, 26 January 2006. <www.sciencedaily.com/releases/2006/01/060124223037.htm>.
University of Texas at Austin. (2006, January 26). Engineers Develop Smallest Device To Control Light, Advance Silicon Technology. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2006/01/060124223037.htm
University of Texas at Austin. "Engineers Develop Smallest Device To Control Light, Advance Silicon Technology." ScienceDaily. www.sciencedaily.com/releases/2006/01/060124223037.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Air Force: $4.2B Saved from Grounding A-10s

Air Force: $4.2B Saved from Grounding A-10s

AP (Apr. 23, 2014) Speaking about the future of the United States Air Force, Chief of Staff Gen. Mark Welsh says the choice to divest the A-10 fleet was logical and least impactful. (April 23) Video provided by AP
Powered by NewsLook.com
Jets Fuel Jump in Boeing's Revenue

Jets Fuel Jump in Boeing's Revenue

Reuters - Business Video Online (Apr. 23, 2014) A sharp rise in revenue for commercial jets offset a decline in Boeing's defense business. And a big increase in deliveries lifted profitability. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins