Featured Research

from universities, journals, and other organizations

Hydrogen Bonds Shown To Play 'Conserved' Role In Protein Folding

Date:
February 13, 2006
Source:
Duke University
Summary:
By changing individual atoms in key places in proteins, Duke University chemists have found new evidence for the importance of comparatively weak "hydrogen bonds" in enabling stringlike proteins to fold into the maximally stable shape they need to assume their roles as biological workhorses. Such protein folding immediately after proteins are synthesized is central to their function in the cell.

Researchers analyzed Arc (left) and CopG proteins.
Credit: Image courtesy of Duke University

By changing individual atoms in key places in proteins, Duke University chemists have found new evidence for the importance of comparatively weak "hydrogen bonds" in enabling stringlike proteins to fold into the maximally stable shape they need to assume their roles as biological workhorses. Such protein folding immediately after proteins are synthesized is central to their function in the cell.

Although they are much weaker than the preeminent "covalent" chemical bonds that bind atoms in biological molecules, hydrogen bonds are known to occur at key points along the central "backbone" structures of all folded proteins. The hydrogen bonds are created by attractions between adjacent hydrogen and oxygen atoms that are sandwiched into the molecular framework.

How big a role hydrogen bonds actually play in protein folding has been a controversial scientific question, according to Duke associate chemistry professor Michael Fitzgerald. "There's been an ongoing debate about the exact role of those hydrogen bonds," he said in an interview. "Are they really super-important, or are they really negligible?"

Fitzgerald, his graduate student Min Wang and his former graduate student Thomas Wales helped address that question in an effort that took years of work.

One by one, they slightly "mutated" the normal arrangement of atoms in proteins to effectively delete hydrogen bonds at five analogous positions along the structural "backbones" of two different protein molecules that fold in the same pattern. Then they analyzed how each deletion affected the stability of the protein. "Stability" means how low energy, or "relaxed," the protein was.

"We deleted each hydrogen bond and then measured how relaxed the protein was afterwards," Fitzgerald said. "It turns out we destabilized the structure in each case. So the relaxed state was not so relaxed any more. The proteins were more stable with those hydrogen bonds.

"Those bonds seemed to clearly play a role in protein folding. And what we were able to uncover in this work is that this role may be highly conserved in a protein fold."

With Wang as the first author, the three chemists described their results in a paper published online on Friday, Feb. 10, 2006 in the journal Proceedings of the National Academy of Sciences. Their research was funded by the National Institutes of Health.

Their paper reported that deletions at each position on one folded protein, known as Arc, had the identical effect at the analogous position on the other protein, called CopG. "Remarkably, the five paired analogs with...mutations at structurally equivalent positions were destabilized to exactly the same degree," the authors wrote.

Obtaining equivalent results in five different places on two different molecules suggests that the thermodynamics, or energy, of such hydrogen bonding interactions "are conserved in a protein fold," their paper added. The word "conserved" means that those could be fundamental features of the folding state, Fitzgerald said.

The Proceedings of the National Academy of Sciences paper also notes that "the generality of our results to other protein folds remains to be explored. However, the results of our studies on Arc and CopG suggest that the conservation of backbone hydrogen-bond thermodynamics in a protein fold may be an important general principle of protein folding reactions."

While scientists have well-characterized the three-dimensional structures of some 30,000 different kinds of protein molecules to date, they have also determined that those 30,000 proteins fold in a "remarkably" smaller 800 different ways, the Duke researchers wrote.

"We said, 'What is it about these 800 structures?'" Fitzgerald said. "The physical and chemical properties that define them are largely different except for one common feature: the hydrogen bonds in the polypeptide backbone which is a constant in all proteins."

When proteins fold, their architectures readjust in a way analogous to the way humans do when they're relaxed, he said. In the process most proteins change from a "spaghetti-like" form into something much more organized.

"Mother Nature has figured out the way to get proteins from bowls of spaghetti into the form of little biological machines," he quipped. "They like to be folded into well-defined three dimensional structures. That lets Mother Nature carry out all the reactions she needs to. And the energy of this folded form is much lower than the energy of the unfolded form.

"When we relax, our inclination is to be in a low-energy on-the-couch state. And proteins, with all their chemical functionalities, are also designed to hang in a certain way when folded.

"So we've uncovered at the level of individual chemical interactions what helps the protein hang, if you will, in its relaxed state."

The Duke researchers' experiments were "technically challenging," Fitzgerald said. As a first step, his former graduate student Wales had to make sure they could synthesize appropriately "unnatural" mutant forms of the Arc and CopG proteins in the test tube.

While scientists commonly use automated recombinant DNA technology to engineer proteins, that technique doesn't work very well to introduce unnatural mutant sequences that could selectively delete individual hydrogen bonds while keeping other parts of the architecture intact, Fitzgerald said.

These "single-atom" mutations were purposefully designed be subtle enough to measure effects on the proteins without totally unraveling their folded structures.

Any protein structural changes could be detected with an optical technique called far-ultraviolet circular dichroism spectroscopy. Protein stabilities were tested by measuring their responses to quanidinium chloride, a chemical used to make proteins unfold, or "denature."

After Wales graduated with a Ph.D. in 2003, it fell to Wang, now about to receive her own doctorate, to do the bulk for the laboratory work. "We asked a very simple question, but the experiments were not only very time-consuming but also required careful attention to analytical detail," said Fitzgerald. "And she got it done."



Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "Hydrogen Bonds Shown To Play 'Conserved' Role In Protein Folding." ScienceDaily. ScienceDaily, 13 February 2006. <www.sciencedaily.com/releases/2006/02/060213091401.htm>.
Duke University. (2006, February 13). Hydrogen Bonds Shown To Play 'Conserved' Role In Protein Folding. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2006/02/060213091401.htm
Duke University. "Hydrogen Bonds Shown To Play 'Conserved' Role In Protein Folding." ScienceDaily. www.sciencedaily.com/releases/2006/02/060213091401.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins