Featured Research

from universities, journals, and other organizations

Are Tougher Electronic Components On The Way?

Date:
March 10, 2006
Source:
Carnegie Institution
Summary:
Researchers have made two durable compounds called noble metal nitrides -- one containing iridium and another containing platinum -- using extreme temperatures and pressures. Both possess a diamond-like hardness, and some compositions might have very low, nearly superconductive electrical resistance, making these substances potentially valuable to engineers. The strength and durability of these materials could make them viable replacements for the titanium nitrides currently valued by the semiconductor industry.

SEM image of platinum nitride crystals.
Credit: Image courtesy of Carnegie Institution

Like modern day alchemists, materials scientists often turn unassuming substances into desirable ones. But instead of working metal into gold, they create strange new compounds that could make the electronic components of the future smaller, faster, and more durable.

Related Articles


Alexander Goncharov of the Carnegie Institution's Geophysical Laboratory and colleagues* have used extreme temperatures and pressures to make two durable compounds called noble metal nitrides; they are the first to succeed in making one of them, and the first to accurately determine the chemical formula of the other. Both nitrides possess a diamond-like hardness, and some compositions might have very low, nearly superconductive electrical resistance--a blend that could prove quite valuable to industry.

The two nitrides--one containing iridium and another containing platinum--could eventually replace the titanium nitrides currently valued by the semiconductor industry as surface coatings because of their strength and durability. The researchers believe iridium and platinum nitrides might be even more durable. The group's work is presented in the March 3, 2006, issue of the journal Science.

Like several other metals such as gold, silver, and palladium, platinum and iridium are noble metals. Such metals are resistant to corrosion and oxidation, and do not easily form compounds with other elements unless coaxed to do so under very high temperatures and pressures. Goncharov and his colleagues used a special tool called a diamond anvil cell to compress the samples to nearly half a million times the atmospheric pressure at sea level. Then they used a focused laser to heat the samples to over 3000 degrees Fahrenheit, or roughly the temperature of a steel mill blast furnace. Under such extreme pressure and temperature the rules of chemistry begin to change, and noble metals can be made to form compounds with other elements such as nitrogen, as in the case of iridium and platinum nitrides.

"We are still attempting to ascertain the electronic properties of these new materials," Goncharov said. "Generally speaking, these nitrides are likely to exhibit several properties that will make them attractive for technological applications. They are potentially important for the electronics industry as durable and reliable coatings, substrates, and conductors. One can also envisage optoelectronic devices, sensitive magnetometers and other metrological equipment that employ these materials."

Though other researchers have previously made platinum nitride, Goncharov's group is the first to discover that for every platinum atom, there are two nitrogen atoms rather than just one. They are also the first to make iridium nitride, which they found has the same basic chemical formula as platinum nitride. In both cases, strong bonds that the dual nitrogen atoms make with the metal atom contribute to the nitrides' hardness and durability. The noble metals, in turn, contribute unusual electronic properties.

So far, Goncharov's group has only created small quantities of iridium and platinum nitrides in the lab. There is much work to do before these compounds can contribute to engineering and manufacturing the technology of tomorrow. But as Goncharov explains, "The present work is useful because it proves that these exotic nitrides exist, even if they were synthesized in a manner that is not practical on an industrial scale."

*Goncharov's collaborators include scientists from the Lawrence Livermore National Laboratory and the Atomic Weapons Establishment in England.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Institution. "Are Tougher Electronic Components On The Way?." ScienceDaily. ScienceDaily, 10 March 2006. <www.sciencedaily.com/releases/2006/03/060308211731.htm>.
Carnegie Institution. (2006, March 10). Are Tougher Electronic Components On The Way?. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2006/03/060308211731.htm
Carnegie Institution. "Are Tougher Electronic Components On The Way?." ScienceDaily. www.sciencedaily.com/releases/2006/03/060308211731.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins