Featured Research

from universities, journals, and other organizations

When The Heat Is On, Droplets, Particles In A Fluid Ride On A Cushion Of Vapor -- And Never Touch

Date:
March 29, 2006
Source:
Ohio State University
Summary:
When a tiny droplet of cold fluid mixes with a high-temperature solid particle, a vapor layer forms between them, and they never actually touch. Ohio State University researchers have performed the first accurate computer simulation of this small-scale phenomenon. Ultimately, this knowledge could enable engineers to boost the efficiency of chemical plants, power plants, and oil refineries, or any place where hot particles and cold fluid mix.

When a tiny droplet of cold fluid mixes with a high-temperature solid particle, a vapor layer forms between them, and they never actually touch. Ohio State University researchers have performed the first accurate computer simulation of this small-scale phenomenon.

Ultimately, this knowledge could enable engineers to boost the efficiency of chemical plants, power plants, and oil refineries, or any place where hot particles and cold fluid mix.

The find contributes to the fundamental understanding of a decades-old problem, explained L.S. Fan, a Distinguished University Professor and the John C. Easton Professor of Engineering in the Department of Chemical and Biomolecular Engineering at Ohio State.

Fan described his findings at the national meeting of the American Chemical Society on March 28, as he received the E.V. Murphree Award in Industrial and Engineering Chemistry.

In the 1950s, scientists who re-created industrial chemical conditions in the lab noticed something interesting about the way two objects collide. When a flat solid surface is much hotter than a liquid droplet, the droplet never makes direct contact with the solid surface. The droplet dances around on the hot surface without touching it.

Fan likened the effect to what happens when water hits the surface of a hot cooking pan.

"The water sizzles and dances around," he said. "It's the same for droplets in contact with spherical particles in a chemical reactor. But then the question becomes, is the heat effectively transferred during the contact? And it turns out that only a very small amount of the heat is transferred due to a very short contact time."

Though scientists knew of this phenomenon for decades, they were not exactly sure how it happened. The technology needed to answer the question -- specifically, the numerical simulation required to produce highly detailed three-dimensional characteristics of the process -– were not attempted until recently.

Fan and his team derived equations to explain how heat travels between separated surfaces. Then they compared three-dimensional supercomputer simulations based on their equations to experiments on actual collisions in the laboratory.

They found that, as heat flows from the surface of a hot particle to a cold droplet, a vapor layer forms between them. The vapor layer forms a cushion that buffers the droplet's impact, so that it bounces off the particle. Heat is exchanged during that brief contact, but the particle and droplet never actually touch, because the vapor layer forms a high-pressure zone that the droplets cannot overcome.

"Once that vapor layer forms, it would take infinite force to bring the droplet and the particle together," Fan said.

In the computer simulations, the high-pressure zone sometimes pushed back against the heated droplet so that it bounced away, or it broke up when it rebounded.

When Fan's team compared the simulations to experiments in the lab, the behavior of the droplets matched almost exactly.

Scientists can apply this finding in industries such as oil refining, where hot-and-cold objects routinely interact. For example, the Ohio State researchers are now testing how different mixes of particles and droplets affect heat flow to help the droplets evaporate.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "When The Heat Is On, Droplets, Particles In A Fluid Ride On A Cushion Of Vapor -- And Never Touch." ScienceDaily. ScienceDaily, 29 March 2006. <www.sciencedaily.com/releases/2006/03/060329084346.htm>.
Ohio State University. (2006, March 29). When The Heat Is On, Droplets, Particles In A Fluid Ride On A Cushion Of Vapor -- And Never Touch. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2006/03/060329084346.htm
Ohio State University. "When The Heat Is On, Droplets, Particles In A Fluid Ride On A Cushion Of Vapor -- And Never Touch." ScienceDaily. www.sciencedaily.com/releases/2006/03/060329084346.htm (accessed August 28, 2014).

Share This




More Matter & Energy News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins