Featured Research

from universities, journals, and other organizations

Controversial Findings Help Explain Evolution Of Life

Date:
April 8, 2006
Source:
Oregon State University
Summary:
Chemists have developed a controversial theory about how supposedly-stable DNA bases can be pushed into a "dark state" in which they are highly vulnerable to damage from ultraviolet radiation -- an idea that has challenged some of the most basic concepts of modern biochemistry, and may explain how the presence of water was key to the evolution of life on Earth.

Chemists at Oregon State University have pioneered a controversial theory about how supposedly-stable DNA bases can be pushed into a "dark state" in which they are highly vulnerable to damage from ultraviolet radiation -- an idea that has challenged some of the most basic concepts of modern biochemistry.

Related Articles


The theory, not long ago dismissed as impossible by much of the science community, has just in recent months begun to garner increasing interest, and is being confirmed by other studies.

And though it began as scientific heresy, the findings could help explain how the presence of water was the key to the evolution of life on Earth, making it possible for life to emerge from what was once a hostile and unforgiving primordial soup of chemicals and radiation.

More and more research is being focused on this area since a study proving the existence of this "dark state" was published by OSU researchers in the Journal of Physical Chemistry -- even though other journals had repeatedly rejected the findings because they were too radical.

"The findings of our studies did not fit most people's preconceived notions about how DNA molecules work, so they assumed we had to be wrong," said Wei Kong, an OSU professor of chemistry. "The critics seemed very sure of themselves, and we had a lot of sleepless nights."

"But just since last summer this has been a key point of discussion at several conferences and caused quite an excitement, as people see the data," Kong said. "Among other things, it helps to explain how water, or something else serving the same role, could have helped lead to the evolution of life."

The core of the debate, Kong said, relates to the behavior of the nucleic acid bases -- adenine, thymine, guanine and cytosine - that as A-T and G-C base pairs form DNA and ultimately become the blueprint for all living things. One of the most basic premises of biochemistry is that these nucleic acid bases are very stable, as they would have to be to prevent rampant mutations and make an organized genetic structure possible.

But studies at OSU, which were done with highly sophisticated electron spectroscopy, showed that the alleged stability of the nucleic acid bases in DNA is largely a myth.

"In their biological form, surrounded by other hydrogen-bonded bases, it's true that the nucleic acids which make up DNA are stable," Kong said. "But we found that living things, in their totality, provide an environment which creates that stability, through attachments within base pairs and/or with neighboring bases. These attachments allow damaging photonic energy to be released as heat. But a DNA base as an isolated molecule, just by itself, does not have that stability."

In a compelling experiment, OSU scientists probed the fate of nucleic acid bases after laser irradiation in the ultraviolet range. They found that the molecules -- which react extraordinarily fast to ultraviolet light insults -- could by themselves spend 20-300 nanoseconds in an unstable, vibrating "dark state" in which they could easily mutate and not fully recover from photonic damage.

The lifetime of the dark state is not long -- a nanosecond is one billionth of a second. But it's more than enough time for DNA mutations to happen, Kong said. And the existence of this dark state raised questions about how life ever could have begun, given that the genetic carriers were so easily mutated or destroyed during this very brief but very vulnerable time.

"When the bases of DNA were first being formed billions of years ago, the atmosphere was actually quite hostile," Kong said. "It was a period prior to any protective ozone layer on Earth and the ultraviolet radiation was very strong. So if primordial DNA bases were forced into this vulnerable dark state, they should have incurred large amounts of photochemical damage that would have made the very survival of these bases difficult, let alone further evolution of life."

Except for one other finding, that is.

According to OSU research, the "dark state" essentially disappears in the presence of water. So if water were present, the earliest DNA bases would have been able to survive and eventually help form the basis for ever-more-complex life forms.

"In modern biological forms, it's not essential that water be present for DNA to have stability," Kong said. "There are other mechanisms that now exist in biology to accomplish that, and complex biological processes are possible that don't always require water. But in its most basic form, we now know that DNA bases are not stable and they are highly vulnerable to UV-induced damage."

The findings suggest, Kong said, how water could have been an absolutely essential compound to allow early DNA bases to remain stable, resist mutation, and ultimately allow for the evolution of life.

OSU researchers were the first to propose the "dark state" model and prove its existence.

"What this is really telling us is that life is a unified process," Kong said. "It's not just a group of DNA bases, but it's also the physical environment in which they exist. Later on, as life became more evolved, there were other ways to achieve genetic stability. But at first, it simply may not have been possible without water."


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Cite This Page:

Oregon State University. "Controversial Findings Help Explain Evolution Of Life." ScienceDaily. ScienceDaily, 8 April 2006. <www.sciencedaily.com/releases/2006/04/060408124233.htm>.
Oregon State University. (2006, April 8). Controversial Findings Help Explain Evolution Of Life. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2006/04/060408124233.htm
Oregon State University. "Controversial Findings Help Explain Evolution Of Life." ScienceDaily. www.sciencedaily.com/releases/2006/04/060408124233.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Fossils & Ruins News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Domestication Might've Been Bad For Horses

Domestication Might've Been Bad For Horses

Newsy (Dec. 16, 2014) A group of scientists looked at the genetics behind the domestication of the horse and showed how human manipulation changed horses' DNA. Video provided by Newsy
Powered by NewsLook.com
Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

AFP (Dec. 16, 2014) A collection of rare manuscripts by composers Mozart, Beethoven, Shubert and Bizet are due to go on sale at auction on December 17. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com
Old Ship Records to Shed Light on Arctic Ice Loss

Old Ship Records to Shed Light on Arctic Ice Loss

Reuters - Innovations Video Online (Dec. 15, 2014) Researchers are looking to the past to gain a clearer picture of what the future holds for ice in the Arctic. A project to analyse and digitize ship logs dating back to the 1850's aims to lengthen the timeline of recorded ice data. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins