Featured Research

from universities, journals, and other organizations

Chemists Get Electrons To 'Break On Through To The Other Side'

Date:
May 5, 2006
Source:
Washington University in St. Louis
Summary:
Chemists at Washington University in St. Louis and Stanford University, in kinship with Frost, have modified a key protein in a bacterium to move electrons along a pathway not normally traveled by -- a finding that advances the understanding of photosynthesis.

Christine Kirmaier (left) and Dewey Holten making adjustments in their sophisticated laser laboratory in Louderman Hall. The husband-wife team have tricked electrons to choose another path in a bacteria's reaction center protein, the factory for photosynthesis. Their find advances the understanding of photosynthesis. (David Kilper/WUSTL Photo)

In the famous Robert Frost poem, "The Road Not Taken," the persona, forced to travel one of two roads, takes the one less traveled by, and "that has made all the difference."

Related Articles


Chemists at Washington University in St. Louis and Stanford University, in kinship with Frost, have modified a key protein in a bacterium to move electrons along a pathway not normally traveled by. They got this to happen 70 percent of the time. That yield "makes all the difference."

For years, scientists studying photosynthesis have noted that electrons in photosynthetic bacteria always choose one of two identical pathways of electron transport in the reaction center (RC) protein, which is the factory for photosynthesis. The electrons always go to one pigment , sometimes called the "right" side, shunning the left. The molecule-to-molecule movement of electrons stimulated by sunlight is called charge separation. It's the basic modus operandi of photosynthesis, whereby plants and some bacteria use sunlight to produce chemical energy. The reaction center protein is like a forest with two roads. The chemists got the electrons to take the path not traveled.

Now a husband-wife physical chemistry team at Washington University in St. Louis and their collaborators at Stanford University have created a mutant photosynthetic reaction center that passes electrons along "the road not taken." And they've done so like gangbusters. Dewey Holten, Ph.D., professor of chemistry, and Christine Kirmaier, Ph.D., research associate professor of chemistry in Arts & Sciences at Washington University in St. Louis, first got bacteria to use the other side in 1995 and got a 15 percent yield, and did so again in 1996, producing a 30 percent yield.

The find advances the understanding of photosynthesis, which is the tool plants incorporated from bacteria to evolve on Earth. Many other kinds of proteins, critical for human and other life, transfer electrons, and the findings should help shed light on how they work, among other basic issues. It also advances multi-step electron transfer processes, which could have an impact in solar energy conversions.

'Lazarus' protein

Holten and Kirmaier, of WUSTL, and Steven G. Boxer, Ph.D., professor of chemistry at Stanford and his graduate student Jessica I. Chuang, made just three changes in the reaction center protein of the Rhodobacter capsulatus DLL mutant to make the electrons travel to the other side with unorthodox abandon.

The results were published in the March 28, 2006 issue of Biochemistry. It was funded by the National Science Foundation. Biochemistry highlighted the paper as one of extreme interest, and C&E News reported on it.

In the laboratory, the mutant bacteria are kept in the dark, fed sugar, and use respiration to make energy. Their oxygen exposure is kept minimal. Nonetheless, they make the reaction center protein, even though they don't use it when growing by respiration.

"This trick allows us to study RC mutations that would be fatal to the organism if it had to live by photosynthesis, " Kirmaier explained.

To get the electrons to go the other side, Holten and Kirmaier altered three amino acids. In doing so, they were a bit like shade tree mechanics puzzling over a dead car trying to make it start.

"Even though we've been able to make electrons use the other side before, this was different because of the high yield and the fact that we started with something absolutely dead and made it work from first principles," Holten said.

"It was fun," Kirmaier said. "It's a very satisfying thing to take something that simply doesn't work and apply the knowledge you've gained over 26 years and get results."

From here the chemists intend to make other alterations in the reaction center and perhaps do some retro-engineering to make even fewer changes and achieve the same, if not higher, outcomes.

"Really, just one of the changes in redox should have been enough," said Kirmaier. "You like to keep the native system intact as much as possible to find out minimally what you have to do."


Story Source:

The above story is based on materials provided by Washington University in St. Louis. Note: Materials may be edited for content and length.


Cite This Page:

Washington University in St. Louis. "Chemists Get Electrons To 'Break On Through To The Other Side'." ScienceDaily. ScienceDaily, 5 May 2006. <www.sciencedaily.com/releases/2006/05/060505084608.htm>.
Washington University in St. Louis. (2006, May 5). Chemists Get Electrons To 'Break On Through To The Other Side'. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2006/05/060505084608.htm
Washington University in St. Louis. "Chemists Get Electrons To 'Break On Through To The Other Side'." ScienceDaily. www.sciencedaily.com/releases/2006/05/060505084608.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins