Featured Research

from universities, journals, and other organizations

'Bubble Bassets' Cured Of Genetic Disorder By In-vivo Gene Therapy Technique

Date:
May 17, 2006
Source:
University of Pennsylvania
Summary:
Researchers from the University of Pennsylvania and NIAID have successfully restored the immune system in basset pups with X-linked severe combined immunodeficiency (the so-called "bubble-boy" disease) using in-vivo gene therapy, without complications or side-effects. In humans, the only treatment for the disease is a bone marrow transplant. The therapy was administered intravenously, so, if applicable to humans, it could be performed in almost any medical facility.

In-vivo gene therapy successfully restored the immune system in basset pups with X-linked severe combined immunodeficiency, or XSCID, a life-threatening genetic disorder that effectively disables the immune system. Researchers from the University of Pennsylvania School of Veterinary Medicine and the National Institute of Allergy and Infectious Disease injected a retrovirus containing a corrective version of the gene responsible for XSCID, an important proof of principle for the technique of "in-vivo" gene therapy. Their findings are presented in the April 15 issue of the journal Blood.

In humans, XSCID affects one in 100,000 boys, resulting from the inheritance of a faulty gene on one of the mother's X-chromosomes. It often proves fatal before the child's first birthday. The disease first came to public attention in the late 1970s with the "Bubble Boy," David Vetter, who lived his entire life in a sterilized environment in order to protect him from outside germs. Vetter died in 1984.

The only treatment for XSCID is through a bone-marrow transplant from a normal donor designed to replenish the hematopoietic stem cells that are capable of constantly renewing new functional immune cells, or, more recently, gene therapy that works by replacing the defective gene with a normal gene in the patients own cells. Gene therapy has been put to curative use against this disease in humans resulting in successful immune reconstitution in 10 of 11 boys in a 1999 French study. This clinical trial consisted of the standard ex-vivo approach to gene therapy in which bone-marrow cells were taken out of the body of the affected boy, cultured in vitro for five days with exposure to a retroviral vector containing the normal gene and transplanted back into the patient. Three of the boys unfortunately developed a T-cell leukemia attributed to the gene therapy resulting in the cessation of this study.

"Although ex-vivo gene therapy has been shown to be capable of restoring normal immune function in XSCID boys, there are several potential problems with this approach," said Peter J. Felsburg, professor of immunology at Penn's School of Veterinary Medicine. "The number of gene-corrected bone- marrow stem cells that can be transplanted back into the patient is limited to correcting the potentially low number of bone-marrow stem cells harvested from the patient. In addition, the manipulation and culturing of the cells outside the body may alter their ability to provide for long-term generation of new immune cells."

The Penn researchers and their NIAID colleagues, led by Drs. Suk See Ting-De Ravin and Harry L. Malech took a different approach by directly injecting the retrovirus vector containing the corrective gene into the bloodstream of XSCID dogs with the hope of correcting the defective hematopoietic stem cells within the patient. The therapy completely restored immune function in three of the four dogs the researchers treated. The fourth dog received the lowest dose of the retrovirus vector the virus that had been engineered to pass on the gene leading Felsburg and his colleagues to believe that there is a lower limit to the dose before the treatment becomes effective.

Since the boys involved in the French gene-therapy study did not develop leukemia until more than three years after the treatment began, the researchers have been particularly interested in knowing the long-term consequences of the trial. At 16 and 18 months following treatment, the two dogs involved in the long-term study have maintained their immune systems and remain, effectively, cured of XSCID, with no adverse side effects.

"The results of this study show that this in-vivo approach to gene therapy may be a viable alternative for not only gene therapy of XSCID but perhaps other hematologic and immunologic diseases, thereby eliminating any potential detrimental effects of the ex-vivo manipulation and culture of cells that is required by current clinical gene therapy protocols," Felsburg said. "In addition, this approach would make it easier to perform gene therapy outside of specialized medical centers."

Felsburg's research was funded by grants from the National Institute of Allergy and Infectious Disease of the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania. "'Bubble Bassets' Cured Of Genetic Disorder By In-vivo Gene Therapy Technique." ScienceDaily. ScienceDaily, 17 May 2006. <www.sciencedaily.com/releases/2006/05/060517001455.htm>.
University of Pennsylvania. (2006, May 17). 'Bubble Bassets' Cured Of Genetic Disorder By In-vivo Gene Therapy Technique. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2006/05/060517001455.htm
University of Pennsylvania. "'Bubble Bassets' Cured Of Genetic Disorder By In-vivo Gene Therapy Technique." ScienceDaily. www.sciencedaily.com/releases/2006/05/060517001455.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins