Featured Research

from universities, journals, and other organizations

Compact Tidal Generator Could Reduce The Cost Of Producing Electricity From Flowing Water

Date:
June 14, 2006
Source:
Engineering and Physical Sciences Research Council
Summary:
What happens if you run an electric motor backwards? That is exactly what researchers Dr Steve Turnock and Dr Suleiman Abu-Sharkh from the University of Southampton asked themselves after they had successfully built an electric motor for tethered underwater vehicles, using funding from the Engineering and Physical Sciences Research Council.

Computer generated image of the integrated electric generator.
Credit: Image courtesy of Engineering and Physical Sciences Research Council

What happens if you run an electric motor backwards? That is exactly what researchers Dr Steve Turnock and Dr Suleiman Abu-Sharkh from the University of Southampton asked themselves after they had successfully built an electric motor for tethered underwater vehicles, using funding from the Engineering and Physical Sciences Research Council.

The well-known answer to this question is that it stops being a motor and becomes a generator. Instead of using electricity to turn a propeller and drive the vehicle along, the flow of water turns the propeller, generating electricity. What’s new about the Southampton design is its simplicity. “This is a compact design that does away with many of the moving parts found in current marine turbines. It’s a new take on tidal energy generation,” says Turnock.

Most current tidal stream generators are essentially wind turbines turned upside down and made to work underwater. They often include complex gearboxes and move the entire assembly to face the flow of the water. For example, they turn a half a circle as the tidal current reverses direction. Gears and moving parts require expensive maintenance, especially when they are used underwater. This pushes up the cost of running the turbines, a cost that is passed on to the consumers of the generated electricity. The Southampton design does not need to turn around because the design of its turbine blades means that they turn equally well, regardless of which way the water flows past them. The blades are also placed in a specially shaped housing that helps channel the water smoothly through the turbine.

Another beauty of the Southampton design is that everything is wrapped in a single package that can be prefabricated so there will be few on-site construction costs. “Just drop it into flowing water and it will start generating electricity. It will work best in fast flowing, shallow water,” says Turnock, who foresees rows of these devices secured to sea floors and riverbeds.

The present prototype is just twenty-five centimetres across and the research team now plan to design a larger model with improved propeller blades that will further increase the efficiency of generating electricity. All being well, the team envisage the generator becoming commercially available within five years.

Notes to editors:

Using funding from EPSRC and industry in the early 2000s, Abu-Sharkh, Turnock and their team created a novel tethered underwater vehicle thruster that used electricity to turn a ducted propeller, providing thrust to control the vehicle’s position and speed. Tethered underwater vehicles are extensively used in the offshore industry for conducting underwater inspections and robotic manipulation. An overall propulsion system based on electrical thrusters is much smaller and lighter than the traditional hydraulic thrusters used in tethered underwater vehicles. So using the new ones reduces the weight of the vehicles, meaning that they require less power to move them and so are cheaper to run. The concept of an electricity generator sprang out of the fundamental research involved in the hydrodynamic and electrical design of the integrated electric thruster. These thrusters, manufactured under licence by the local Hampshire company TSL, are already in use around the world for a variety of underwater vehicle applications.

Funding for these tests (which build on the original EPSRC-funded work) was provided as part of the University of Southampton’s School of Engineering Sciences’ MSc programme in Maritime Engineering Science.


Story Source:

The above story is based on materials provided by Engineering and Physical Sciences Research Council. Note: Materials may be edited for content and length.


Cite This Page:

Engineering and Physical Sciences Research Council. "Compact Tidal Generator Could Reduce The Cost Of Producing Electricity From Flowing Water." ScienceDaily. ScienceDaily, 14 June 2006. <www.sciencedaily.com/releases/2006/06/060614120238.htm>.
Engineering and Physical Sciences Research Council. (2006, June 14). Compact Tidal Generator Could Reduce The Cost Of Producing Electricity From Flowing Water. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2006/06/060614120238.htm
Engineering and Physical Sciences Research Council. "Compact Tidal Generator Could Reduce The Cost Of Producing Electricity From Flowing Water." ScienceDaily. www.sciencedaily.com/releases/2006/06/060614120238.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) — Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) — An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins