Featured Research

from universities, journals, and other organizations

Neurons Grown From Embryonic Stem Cells Restore Function In Paralyzed Rats

Date:
June 21, 2006
Source:
NIH/National Institute of Neurological Disorders and Stroke
Summary:
For the first time, researchers have enticed transplants of embryonic stem cell-derived motor neurons in the spinal cord to connect with muscles and partially restore function in paralyzed animals. The study suggests that similar techniques may be useful for treating such disorders as spinal cord injury, transverse myelitis, amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy.

For the first time, researchers have enticed transplants of embryonic stem cell-derived motor neurons in the spinal cord to connect with muscles and partially restore function in paralyzed animals. The study suggests that similar techniques may be useful for treating such disorders as spinal cord injury, transverse myelitis, amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy. The study was funded in part by the NIH's National Institute of Neurological Disorders and Stroke (NINDS).

The researchers, led by Douglas Kerr, M.D., Ph.D., of The Johns Hopkins University School of Medicine, used a combination of transplanted motor neurons, chemicals capable of overcoming signals that inhibit axon growth, and a nerve growth factor to attract axons to muscles. The report is published in the July 2006 issue of Annals of Neurology.*

"This work is a remarkable advance that can help us understand how stem cells might be used to treat injuries and disease and begin to fulfill their great promise. The successful demonstration of functional restoration is proof of the principle and an important step forward. We must remember, however, that we still have a great distance to go," says Elias A. Zerhouni, Director of the National Institutes of Health.

"This study provides a 'recipe' for using stem cells to reconnect the nervous system," says Dr. Kerr. "It raises the notion that we can eventually achieve this in humans, although we have a long way to go."

In the study, Dr. Kerr and his colleagues cultured embryonic stem cells from mice with chemicals that caused them to differentiate into motor neurons. Just before transplantation, they added three nerve growth factors to the culture medium. Most of the cells were also cultured with a substance called dibutyrl cAMP (dbcAMP) that helps to overcome axon-inhibiting signals from myelin, the substance that insulates nerve fibers in the spinal cord.

The cells were transplanted into eight groups of paralyzed rats. Each group received a different combination of treatments. Some groups received injections of a drug called rolipram under the skin before and after the transplants. Rolipram, a drug approved to treat depression, helps to counteract axon-inhibiting signals from myelin. Some animals also received transplants of neural stem cells that secreted the nerve growth factor GDNF into the sciatic nerve (the sciatic nerve extends from the spine down the back of the hind leg). GDNF causes axons to grow toward it.

Three months after the transplants, the investigators examined the rats for signs that the stem cell-derived neurons had survived and integrated with the nervous system. The rats that had received the full cocktail of treatments – transplanted motor neurons, rolipram, dbcAMP, and GDNF-secreting neural stem cells in the sciatic nerve – had several hundred transplant-derived axons extending into the peripheral nervous system, more than in any other group. The axons in these animals reached all the way to the gastrocnemius muscle in the lower leg and formed functional connections, called synapses, with the muscle. The rats showed an increase in the number of functioning motor neurons and an approximately 50 percent improvement in hind limb grip strength by 4 months after transplantation. In contrast, none of the rats given other combinations of treatments recovered lost function.

"We found that we needed a combination of all of the treatments in order to restore function," Dr. Kerr says.

Follow-up experiments with GDNF treatment on only one side of the body showed that, by 6 months after treatment, 75 percent of rats given the full combination of treatments regained the ability to bear weight on the GDNF-treated limbs and to take steps and push away with the foot on that side of the body.

"This research represents significant progress," says David Owens, Ph.D., the NINDS program director for the grant that funded the work. "It is a convergence of embryonic stem cell research with other areas of research that we've funded, including work that uses combination therapies such as rolipram and dbcAMP, growth factors, and cells to facilitate the repair of the injured spinal cord."

Previous studies have shown that stem cells can halt spinal motor neuron degeneration and restore function in animals with spinal cord injury or ALS. However, this study is the first to show that transplanted neurons can form functional connections with the adult mammalian nervous system, the researchers say. They used both electrophysiological and behavioral studies to verify that the recovery was due to connections between the peripheral nervous system and the transplanted neurons.

"We've previously shown that stem cells can protect at-risk neurons, but in ongoing neurodegenerative diseases, there is a very small window of time to do so. After that, there is nothing left to protect," says Dr. Kerr. "To overcome the loss of function, we need to actually replace lost neurons."

While these results are promising, much work remains before a similar strategy could be tried in humans, Dr. Kerr says. The therapy must first be tested in larger animals to determine if the nerves can reconnect over longer distances and to make sure the treatments are safe. There currently is no large-animal model for motor neuron degeneration, so Dr. Kerr's group is working to develop a pig model. Researchers also need to test human embryonic stem cells to learn if they will work in the same way as the mouse cells. It has only recently become possible to grow motor neurons from human embryonic stem cells, Dr. Kerr adds. However, if the future studies go well, this type of therapy might eventually be useful for spinal muscular atrophy, ALS, and other motor neuron diseases.

*Deshpande D, Kim YS, Martinez T, Carmen J, Dike S, Shats I, Rubin L, Drummond J, Krishnan C, Hoke A, Maragakis N, Shefner J, Rothstein J, Kerr D. "Recovery from Paralysis in Adult Rats Using Embryonic Stem Cells." Annals of Neurology, July 2006, Vol. 60, No. 1, pp. 22-34.

The NINDS is a component of the National Institutes of Health (NIH) within the Department of Health and Human Services and is the nation's primary supporter of biomedical research on the brain and nervous system. The NINDS mission is to reduce the burden of neurological disease. Go to for more information.

The National Institutes of Health (NIH) -- The Nation's Medical Research Agency -- includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary Federal agency for conducting and supporting basic, clinical, and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.


Story Source:

The above story is based on materials provided by NIH/National Institute of Neurological Disorders and Stroke. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute of Neurological Disorders and Stroke. "Neurons Grown From Embryonic Stem Cells Restore Function In Paralyzed Rats." ScienceDaily. ScienceDaily, 21 June 2006. <www.sciencedaily.com/releases/2006/06/060621084832.htm>.
NIH/National Institute of Neurological Disorders and Stroke. (2006, June 21). Neurons Grown From Embryonic Stem Cells Restore Function In Paralyzed Rats. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2006/06/060621084832.htm
NIH/National Institute of Neurological Disorders and Stroke. "Neurons Grown From Embryonic Stem Cells Restore Function In Paralyzed Rats." ScienceDaily. www.sciencedaily.com/releases/2006/06/060621084832.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com
Thousands Who Can't Afford Medical Care Flock to Free US Clinic

Thousands Who Can't Afford Medical Care Flock to Free US Clinic

AFP (July 23, 2014) America may be the world’s richest country, but in terms of healthcare, the World Health Organisation ranks it 37th. Thousands turned out for a free clinic run by "Remote Area Medical" with a visit from the Governor of Virginia. Duration: 2:40 Video provided by AFP
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins