Featured Research

from universities, journals, and other organizations

New Model To Assess World Trade Center Fallout

Date:
June 29, 2006
Source:
Rutgers, the State University of New Jersey
Summary:
The environmental and health consequences of the terrorist attacks on the World Trade Center have been the subject of controversy almost from the beginning. Scientists at Rutgers, The State University of New Jersey, have created a computerized model that will help public health officials understand the degree of harmful exposure in the immediate aftermath of the attacks.

The environmental and health consequences of the terrorist attacks on the World Trade Center have been the subject of controversy almost from the beginning. Scientists at Rutgers, The State University of New Jersey, have created a computerized model that will help public health officials understand the degree of harmful exposure in the immediate aftermath of the attacks.

Georgiy Stenchikov of Rutgers, and Paul Lioy, Nilesh Lahoti, and Panos Georgopoulos of the Environmental, Occupational and Health Sciences Institute, a joint institute of Rutgers and the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School; and David J. Diner and Ralph Kahn of the NASA Jet Propulsion Laboratory are the authors of a paper in the July issue of the journal Environmental Fluid Mechanics. Stenchikov’s scientific interests span from convective storm and local air pollution modeling to the large-scale climate impacts of volcanic eruptions and global warming. Lioy, Lahoti and Georgopoulos have interests that include complex source to dose modeling. Diner and Kahn are leading scientists on the NASA Earth Observing System’s Multi-angle Imaging SpectroRadiometer (MISR) instrument, a key source of satellite data used in the study (http://www-misr.jpl.nasa.gov).

The paper describes the dispersion of the plume of aerosols –tiny particles suspended in air -- from the World Trade Center disaster, and provides a way to evaluate the human exposure to that plume. Aerosols were injected into the urban atmosphere by the collapse of the WTC main structures and by the fires at Ground Zero, forming a plume of smoke and fine particulate matter. It rose 1.25 kilometers into the sky, and blew over lower Manhattan, Brooklyn, and Queens shifting direction with the wind, so people in New Jersey and Northern Manhattan also smelled the plume until rain on Sept. 14 damped it down. Anyone who witnessed the attacks and saw the fire that followed, might expect that people in the plume vicinity could be at health risk; the work of Stenchikov and his co-authors addresses: How much, and where, giving public health authorities much more information about contaminant distribution and the physical process involved.

New York, like most big cities, had air-quality monitoring systems in place on the morning of the attack. But there were three problems: first, they weren’t designed to monitor the fallout from such a massive event; second, many sensors in lower Manhattan went offline when the power was cut; and, finally, many became clogged with debris. But not all of the sensors went down; enough stayed in action to help Stenchikov and his colleagues to test and calibrate their model predictions. The satellite data provided a regional map of plume height and extent, used to better initialize the model and to constrain the simulations.

The scientists built their model to fill the gaps in observations and crack a puzzle of missing pieces. To reconstruct the dispersion of contaminants, they first “down-scaled” the output from the best weather forecast model available, using the Regional Atmospheric Modeling System (RAMS) to obtain high-quality micrometeorological fields with a spatial resolution of 250 meters. Then they fed this information into another mathematical model, the Hybrid Particle and Concentration Transport (HYPACT), which allowed them to calculate contaminant transport and distribution. Stenchikov and his colleagues combine their modeling results with the surface-based and space-based observations. With this combination, they took a major step in characterizing the air-pollution generated by the 9/11 tragedy in the New York City and nearby areas. This information will be crucial for further studies of the impact of air pollution on people and the environment, and will be of use to researchers tracking the specific health effects of the plume from the Sept. 11 attacks.

“The integration of model results and observations allows us to roughly estimate the amount of aerosol produced and conclude, for example, that the maximum concentration of contaminants in Brooklyn and Queens during a few days following the attack was about an order of magnitude less than in Manhattan,” Stenchikov said.


Story Source:

The above story is based on materials provided by Rutgers, the State University of New Jersey. Note: Materials may be edited for content and length.


Cite This Page:

Rutgers, the State University of New Jersey. "New Model To Assess World Trade Center Fallout." ScienceDaily. ScienceDaily, 29 June 2006. <www.sciencedaily.com/releases/2006/06/060629103809.htm>.
Rutgers, the State University of New Jersey. (2006, June 29). New Model To Assess World Trade Center Fallout. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2006/06/060629103809.htm
Rutgers, the State University of New Jersey. "New Model To Assess World Trade Center Fallout." ScienceDaily. www.sciencedaily.com/releases/2006/06/060629103809.htm (accessed October 21, 2014).

Share This



More Computers & Math News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Apple Enters Mobile Payment Business

Apple Enters Mobile Payment Business

AP (Oct. 20, 2014) Apple is making a strategic bet with the launch of Apple Pay, the mobile pay service aimed at turning your iPhone into your wallet. (Oct. 20) Video provided by AP
Powered by NewsLook.com
Apple Pay Goes Live

Apple Pay Goes Live

Reuters - Business Video Online (Oct. 20, 2014) Apple launches an ambitious new mobile service, Apple Pay, which aims to change the way consumers pay for goods and services, doing away with cash and traditional credit cards. Jeanne Yurman reports. Video provided by Reuters
Powered by NewsLook.com
Google To Protect Against Piracy ... At A Cost

Google To Protect Against Piracy ... At A Cost

Newsy (Oct. 20, 2014) Google is changing its search-engine results to protect content producers from piracy — for a price. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins