Featured Research

from universities, journals, and other organizations

Mutation In Tumor Suppressor Gene Causes Pancreatic Islet Cells To Reproduce

Date:
July 6, 2006
Source:
University of Pennsylvania School of Medicine
Summary:
Researchers at the University of Pennsylvania School of Medicine have found that the acute loss of a protein called menin can cause the proliferation of pancreatic islet cells, which secrete insulin to regulate blood sugar. The menin gene (Men1) mutation in humans causes an inherited disease called Multiple Endocrine Neoplasia type 1 (MEN1). Not only could this discovery inform basic cancer biology, it also has implications for treating type 1 diabetes.

Comparison of islet cell proliferation in pancreatic islets with (left panel) and without (right panel) menin protein. The pink dots within the dashed yellow circle -- indicated by the red arrows -- represent proliferating islet cells. More proliferating cells (pink dots) appear in islets without menin (right).
Credit: Image Ya-Xiong Chen, PhD, University of Pennsylvania School of Medicine, and Cancer Research, June 2006

Researchers at the University of Pennsylvania School of Medicine have found that the acute loss of a protein called menin can cause the proliferation of pancreatic islet cells, which secrete insulin to regulate blood sugar. The menin gene (Men1) mutation in humans causes an inherited disease called Multiple Endocrine Neoplasia type 1 (MEN1). Not only could this discovery inform basic cancer biology, it also has implications for treating Type 1 diabetes. The researchers report their findings in the latest issue of Cancer Research.

MEN1 patients develop mostly benign tumors or hyperplasia (over proliferation of cells) in several endocrine organs, such as parathyroids and pancreatic islet cells. Normally, the menin protein has a tumor-suppressing or cell-proliferation-suppressing function. Loss of menin can cause proliferation of pancreatic islet cells, but not the adjacent exocrine cells that secrete proteins other than insulin.

The researchers developed an animal model that allowed for precise timing in “cutting” the Men1 gene from the genome of knock-out mice. They showed that within seven days of excising Men1, pancreatic islet cells proliferated in the mice. Previously, other labs could only see proliferating islet cells after months of Men1 excision because they could not precisely time the process. “Our results show an acute effect of Men1 excision and directly link Men1 to repression of pancreatic islet cell proliferation,” says senior author Xianxin Hua, MD, PhD, Assistant Professor of Cancer Biology at Penn's Abramson Family Cancer Research Institute.

The researchers excised Men1, the gene encoding the protein menin, from both islet cells and adjacent exocrine cells in the pancreas, but only in islet cells did they observe cells proliferating. This is important because Men1 mutations largely cause endocrine hyperplasia or tumors, but not exocrine tumors. “Our results showing preferential effects on islet-cell proliferation could at least in part explain that the loss of menin only leads to endocrine tumors,” explains Hua.

In type I diabetes, the loss of islet beta cells is the leading reason why a sufficient amount of insulin cannot be produced. “If we could eventually repress menin function to specifically stimulate beta-cell proliferation, this may facilitate devising new strategies to increase insulin-secreting beta cells and treating diabetes,” notes Hua.

“We did not expect the connection between a study about a tumor suppressor and a potential new avenue for treating diabetes,” he adds. “By taking advantage of studying a genetically well-characterized tumor syndrome, MEN1, we set out to understand how the first step of benign tumor development is precisely controlled. The more we discovered about menin function, the better we understood the precise role of menin in regulating islet cell proliferation. This latest finding about the acute and specific role of menin on repressing islet cells, but not adjacent exocrine cells, led to the realization that manipulating the menin pathway might be a powerful way to stimulate islet cell proliferation to fight type I diabetes, although we are just beginning toward that goal.”

Study co-authors are Robert B. Schnepp, Ya-Xiong, Haoren Wang, Tim Cash, Albert Silva, Alan Diehl, and Eric Brown, with participation from the members of Dr. Eric Brown's lab and Dr. Alan Diehl's lab, all from Penn. This research was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Mutation In Tumor Suppressor Gene Causes Pancreatic Islet Cells To Reproduce." ScienceDaily. ScienceDaily, 6 July 2006. <www.sciencedaily.com/releases/2006/07/060705184219.htm>.
University of Pennsylvania School of Medicine. (2006, July 6). Mutation In Tumor Suppressor Gene Causes Pancreatic Islet Cells To Reproduce. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2006/07/060705184219.htm
University of Pennsylvania School of Medicine. "Mutation In Tumor Suppressor Gene Causes Pancreatic Islet Cells To Reproduce." ScienceDaily. www.sciencedaily.com/releases/2006/07/060705184219.htm (accessed September 19, 2014).

Share This



More Health & Medicine News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
How The 'Angelina Jolie Effect' Increased Cancer Screenings

How The 'Angelina Jolie Effect' Increased Cancer Screenings

Newsy (Sep. 19, 2014) Angelina's Jolie's decision to undergo a preventative mastectomy in 2013 inspired many women to seek early screenings for the disease. Video provided by Newsy
Powered by NewsLook.com
The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins