Featured Research

from universities, journals, and other organizations

Small, But Mighty: Breakthrough Analysis Raises Questions About Link Between Minute Organism And Climate

Date:
July 19, 2006
Source:
University Of Miami Rosenstiel School Of Marine & Atmospheric Science
Summary:
While phytoplankton scientists focus their research on some of the smallest organisms in the world, the impacts can be global. This week, in Proceedings of the National Academy of Sciences, a genomic analysis of the smallest, free-living eukaryote offers insight into its ability to thrive in the world's oceans and evolutionary biology. Known as Ostreococcus tauri, the analyzed phytoplankton has been thought to be not only the smallest eukaryote, but also ancient, dating back 1,500 million years and capable of photosynthesis that helps with carbon cycling.

Ostreococcus tauri. The red is the natural autofluorescence of its photosynthetic pigments -- the chloroplast. Each red dot represents one cell.
Credit: Image courtesy of University Of Miami Rosenstiel School Of Marine & Atmospheric Science

While phytoplankton scientists focus their research on some of the smallest organisms in the world, the impacts can be global. This week, in Proceedings of the National Academy of Sciences, a genomic analysis of the smallest, free-living eukaryote offers insight into its ability to thrive in the world's oceans and evolutionary biology.

Known as Ostreococcus tauri, the analyzed phytoplankton has been thought to be not only the smallest eukaryote, but also ancient, dating back 1,500 million years and capable of photosynthesis that helps with carbon cycling. This genomic analysis offers important clues regarding the minimum genome size necessary for an organism to be able to live as a free living cell, perform photosynthesis, impact carbon cycling, and influence the climate.

In biology, organisms are divided into two major groupings: prokaryotes and eukaryotes, with eukaryotes being the more structurally complex. Humans, other animals, plants, fungi, and multi-cellular and complex unicellular microorganisms all fall within the “superkingdom” of eukaryotes.

“This is pretty big news,” said Dr. Alexandra Worden, one of the paper's authors and an assistant professor at the University of Miami Rosenstiel School of Marine & Atmospheric Science, who was named a Moore Foundation Young Investigator in Marine Microbiology in 2004. Worden worked with the Osteococcus genome consortium, a european initiative to sequence this important organisms genome. “We have recently found that at times organisms such as Ostreococcus can photosynthetically produce more biomass than cyanobacteria, which are found in much greater numbers. Also, there is pretty good evidence that predators are consuming the carbon that is produced. This is important since these organisms don't sink on their own, so their fate - whether destroyed by viruses or consumed by larger organisms - dictates how they contribute to the global carbon cycle.”

The prevailing indicator of climate change and global warming has been the increase in atmospheric carbon dioxide. Scientists agree that the ocean plays a key role in removing carbon dioxide from the atmosphere in a process known as the carbon cycle. Photosynthesizing organisms, such as the Ostreococcusconsume carbon and release oxygen in its place.

“Certainly, the dynamics of these organisms are very important to understand since they are the photosynthesizers of the ocean. How much carbon they produce and where it goes are really important,” Worden said. “Right now, we can only say that understanding the physiological controls of their growth - which is what the genome sequence helps us do - will help us to be more predictive of what changes might occur in such populations and how the oceans' ability to deal with climate change will be affected.”

The study in the current Proceedings unveils the complete genome sequence of the world's smallest free-living eukaryote known to date. Scientists were able to observe the genetic basis of nutrient uptake and photosynthesis capabilities. Additionally, the scientists found that while the organism is compact, its genome is structurally complex, but quite streamlined.

Worden's group is leading the genome sequencing effort of two strains of another organism (Micromonas pusilla) that is closely related to Ostreococcus and will be performing comparative genomics between the three organisms to try to understand their different niches as well as finer points of evolutionary and physiological processes (e.g., why Micromonas is found in polar waters while Ostreococcus is not). The work is being done in collaboration with the Joint Genome Institute of the U.S. Department of Energy because of its carbon cycle importance.


Story Source:

The above story is based on materials provided by University Of Miami Rosenstiel School Of Marine & Atmospheric Science. Note: Materials may be edited for content and length.


Cite This Page:

University Of Miami Rosenstiel School Of Marine & Atmospheric Science. "Small, But Mighty: Breakthrough Analysis Raises Questions About Link Between Minute Organism And Climate." ScienceDaily. ScienceDaily, 19 July 2006. <www.sciencedaily.com/releases/2006/07/060719092407.htm>.
University Of Miami Rosenstiel School Of Marine & Atmospheric Science. (2006, July 19). Small, But Mighty: Breakthrough Analysis Raises Questions About Link Between Minute Organism And Climate. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2006/07/060719092407.htm
University Of Miami Rosenstiel School Of Marine & Atmospheric Science. "Small, But Mighty: Breakthrough Analysis Raises Questions About Link Between Minute Organism And Climate." ScienceDaily. www.sciencedaily.com/releases/2006/07/060719092407.htm (accessed July 28, 2014).

Share This




More Earth & Climate News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins