Featured Research

from universities, journals, and other organizations

Beyond Lipids: Understanding The Mechanics Of Atherosclerosis

Date:
July 24, 2006
Source:
University of California - San Diego
Summary:
Atherosclerotic narrowing and hardening of coronary arteries typically appear first at vessel branches, and a study in the October issue of Cellular Signalling reports that the type of mechanical stretching found at those branches activates a cellular protein known to damage cells. The report is the first to link mechanical forces with structural and biochemical changes in blood vessel cells that could explain why atherosclerotic lesions form preferentially at branches of coronary arteries.

UCSD bioengineers have found a link between parallel alignment of "stress fibers" (red) in blood vessel cells and healthy levels in those cells of a protein called JNK. The white bar (lower right) represents 10 micrometers.

Atherosclerotic narrowing and hardening of coronary arteries typically appear first at vessel branches, and a study in the October issue of Cellular Signalling reports that the type of mechanical stretching found at those branches activates a cellular protein known to damage cells. The report is the first to link mechanical forces with structural and biochemical changes in blood vessel cells that could explain why atherosclerotic lesions form preferentially at branches of coronary arteries.

Related Articles


The findings, which are currently available online at the journal’s Website, were reported by a team of scientists at the University of California, San Diego as part of an ongoing effort to understand how mechanical forces affect the health of cells that line arteries.

The cellular protein in question is called JNK, which is short for c-jun N-terminal kinase. The protein is a key barometer of outside stresses on a variety of cell types. Researchers are examining the role of JNK in many diseases because it regulates the expression of genes involved in programmed cell death, tumor genesis, and other stress responses.

Atherosclerosis, the collection of deposits such as cholesterol along artery walls, accounts for nearly 75 percent of deaths from cardiovascular disease. Most drugs to treat atherosclerosis influence the levels of cholesterol and other lipids in the blood, but the UCSD researchers suspect that understanding the role of mechanical forces acting on blood vessel cells may help to design better approaches to treatment.

“We’ve known for decades that atherosclerotic lesions develop preferentially at vessel branches rather than along unbranched vessels, but we’ve not been able to identify the biochemical events that trigger formation of the lesions,” said Shu Chien, director of the Whitaker Institute of Biomedical Engineering at UCSD. “We now have identified a possible smoking gun: activation of JNK, which is dependent on the directionality of blood vessel stretching.”

Chien, research scientist Shunichi Usami, and post-doctoral fellow Roland Kaunas, now an assistant professor of biomedical engineering at Texas A&M University,isolated endothelial cells from the bovine aorta and grew them in culture flasks. They seeded the cells onto silicone rubber membranes that had been coated with a protein that allowed the cells to attach the way they do to underlying blood vessel tissue in the body.They then stretched the cells 10 percent of their length 60 times per minute to simulate the rhythmic flexing of an artery in response to heart beats.

Cells that were stretched back and forth along one axis exhibited a healthy response: the level of JNK rose and quickly returned to basal levels as the cells also produced intracellular actin fibers that were aligned perpendicular to the axis of stretching. However, when the researchers stretched cells in two directions simultaneously, they noted an unhealthy response: actin fibers oriented randomly and JNK concentrations rose to higher levels and remain elevated.

“We’re continually amazed at how quickly these cells can reorient these stress fibers when we change the direction of stretch,” said Chien. “At the same time, the actin cytoskeleton of endothelial cells is somehow playing a key role in activating and deactivating JNK.”

The tubular geometry of the straight part of arteries ensures that the cyclical rise and fall of blood pressure results in uniaxial stretch of arteries. However, the more complex geometry of artery branches promotes an unhealthy stretching of the blood vessel along more than one axis.

A second mechanical force, the so-called shear force of blood flowing through vessels, also influences the orientation of stress fibers in endothelial cells. A laminar flow of blood prompts stress fibers to orient in the healthy direction, while disturbed and low blood flows caused stress fibers to form in an unhealthy, random orientation. Chien’s group is now working to understand how both stretching and shear forces influence JNK activation.

“We still need to limit the amount of cholesterol in our diet, especially the low-density lipoprotein, or bad cholesterol,” said Chien. “But our new understanding of how mechanical forces affect JNK will eventually help us gain better understanding of the mechanism underlying the focal localization of atherosclerotic lesions and design better approaches to treat this important disease state.”


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Beyond Lipids: Understanding The Mechanics Of Atherosclerosis." ScienceDaily. ScienceDaily, 24 July 2006. <www.sciencedaily.com/releases/2006/07/060721203545.htm>.
University of California - San Diego. (2006, July 24). Beyond Lipids: Understanding The Mechanics Of Atherosclerosis. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2006/07/060721203545.htm
University of California - San Diego. "Beyond Lipids: Understanding The Mechanics Of Atherosclerosis." ScienceDaily. www.sciencedaily.com/releases/2006/07/060721203545.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins