Featured Research

from universities, journals, and other organizations

New Radar Technique Locates Storm-fueling Moisture

Date:
August 1, 2006
Source:
National Center for Atmospheric Research
Summary:
For the first time, multiple Doppler weather radars are tracking water vapor in the lower atmosphere. The National Center for Atmospheric Research is examining the data this summer across northeast Colorado. If adopted nationwide, this technique may help forecasters pin down the location and timing of heavy rains more accurately.

Jim Wilson (left) and Rita Roberts discuss refractivity data.
Credit: Photo by Carlye Calvin, copyright UCAR.

People planning ball games, picnics, and other outdoor events may soon have more precise short-term forecasts of rainfall, thanks to an observing strategy now being tested by the National Center for Atmospheric Research (NCAR). An NCAR field project this summer is, for the first time, using multiple Doppler weather radars to track water vapor in the lower atmosphere. Measuring the low-level moisture is expected to help forecasters pin down the locations and timing of storms that might rage a few minutes to a few hours later.

Related Articles


The project is named REFRACTT (Refractivity Experiment For H2O Research And Collaborative operational Technology Transfer). Researchers are measuring changes in the speed of radar signals caused by refraction, which in turn reveal the presence or absence of atmospheric moisture. If the project proves successful, this refractivity technique could be added in the next few years to the national network of Doppler radars operated by NOAA's National Weather Service (NWS).

"Nobody's ever seen such high-resolution data on moisture before. We believe this could greatly help forecasters predict where heavy rains might develop," says NCAR scientist Rita Roberts, the lead principal investigator for REFRACTT.

REFRACTT runs from June 5 to August 11 and is being funded by the National Science Foundation, NCAR's primary sponsor. Along with four radars, scientists are using computer models, satellites, NCAR radionsondes (weather balloons), and ground-based sensors that intercept Global Positioning System signals and infer atmospheric moisture.

Strong contrasts in moisture can help to spawn intense storms, but the exact location of these contrasts is often hard to identify before storms develop. Currently, NWS radars detect rainfall and winds but not water vapor. Moreover, weather stations and weather-balloon launches that do measure water vapor are often separated by 50-100 miles or more. As a result, there is no regular monitoring of low-level moisture in between surface stations.

When meteorologists use Doppler radar to track storms, they normally monitor signals that strike raindrops, hailstones, or snowflakes and bounce back toward the radar. The strength of the returning signals indicates the intensity of rain, hail, or snow, while the change in signal frequency holds information on wind speed. During REFRACTT, scientists are adding a third variable: the speed of the radar signals. They are using fixed targets such as power lines and silos to see how much the radar signal is sped up or slowed down by variations in water vapor. The resulting data on refractivity is plotted on a map that shows scientists where the moisture is located.

The idea behind REFRACTT was developed by Frederic Fabry of McGill University while he was a visiting researcher at NCAR in the late 1990s. He has since collaborated with NCAR to refine the technique.

Forecasters at the Denver NWS office have been using REFRACTT data this summer to monitor the weather across northeast Colorado, including the risk of weak tornadoes that often spin up east of the Front Range. After the field project ends, the NWS will consider including refractivity as part of a larger upgrade to the national radar network.

"Low-level moisture is the key to our weather here, especially during the summertime," says Larry Mooney, meteorologist in charge at the Denver NWS office. "We're really excited about the REFRACTT data. I think it's a great example of how you can move technology into the operational realm pretty quickly if you're committed to it."


Story Source:

The above story is based on materials provided by National Center for Atmospheric Research. Note: Materials may be edited for content and length.


Cite This Page:

National Center for Atmospheric Research. "New Radar Technique Locates Storm-fueling Moisture." ScienceDaily. ScienceDaily, 1 August 2006. <www.sciencedaily.com/releases/2006/08/060801182125.htm>.
National Center for Atmospheric Research. (2006, August 1). New Radar Technique Locates Storm-fueling Moisture. ScienceDaily. Retrieved April 18, 2015 from www.sciencedaily.com/releases/2006/08/060801182125.htm
National Center for Atmospheric Research. "New Radar Technique Locates Storm-fueling Moisture." ScienceDaily. www.sciencedaily.com/releases/2006/08/060801182125.htm (accessed April 18, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, April 18, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nervous Return to Everest a Year After Deadly Avalanche

Nervous Return to Everest a Year After Deadly Avalanche

AFP (Apr. 18, 2015) In the Himalayan town of Lukla, excitement mingles with fear as mountaineers make their way up to Everest a year after an avalanche killed 16 guides and triggered an unprecedented shut-down of the world&apos;s highest peak. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
L.A. Water Cops Remind Residents of Water Conservation

L.A. Water Cops Remind Residents of Water Conservation

Reuters - US Online Video (Apr. 18, 2015) "Water cops" in Los Angeles remind the public about water conservation methods amid California&apos;s prolonged drought. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Planet Defence Conference Tackles Asteroid Threat

Planet Defence Conference Tackles Asteroid Threat

AFP (Apr. 17, 2015) Scientists gathered at a European Space Agency (ESA) facility outside Rome this week for the Planetary Defence Conference 2015 to discuss how to tackle the potential threat from asteroids hitting Earth. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
Gulf Scarred, Resilient 5 Years After BP Spill

Gulf Scarred, Resilient 5 Years After BP Spill

AP (Apr. 17, 2015) Five years after the Deepwater Horizon spill in the Gulf of Mexico, splotches of oil still dot the seafloor and wads of tarry petroleum-smelling material hide in pockets in the marshes of Barataria Bay. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins