Featured Research

from universities, journals, and other organizations

Computational Analysis Shows That Plant Hormones Often Go It Alone

Date:
August 12, 2006
Source:
Salk Institute
Summary:
Unlike the Three Musketeers who lived by the motto "All for one, one for all," plant hormones prefer to do their own thing. For years, debate swirled around whether pathways activated by growth-regulating plant hormones converge on a central growth regulatory module. Now, the cooperation model is challenged by researchers at the Salk Institute for Biological Studies. They show that each hormone acts largely independently in the Aug. 11 issue of Cell.

Researchers analyzed protein aggregation in the roundworm.
Credit: Image courtesy of Salk Institute

Unlike the Three Musketeers who lived by the motto "All for one, one for all," plant hormones prefer to do their own thing. For years, debate swirled around whether pathways activated by growth-regulating plant hormones converge on a central growth regulatory module. Now, the cooperation model is challenged by researchers at the Salk Institute for Biological Studies. They show that each hormone acts largely independently in the Aug. 11 issue of Cell.

The Salk team found that specific plant hormones often activate different factors rather than a common target. "This result was completely unexpected because hormones with similar effects on plant growth seem to act on different gene sets," says the study's lead author Joanne Chory, Ph.D., a professor in the Plant Biology Laboratory and investigator with the Howard Hughes Medical Institute.

Plants rely on hormones, which act as chemical messengers to regulate every aspect of their biology. Growth, for example, is stimulated by multiple hormones -- brassinosteroids, auxins and gibberellins among them. The fact that these and several other hormones stimulate plant growth suggested to some investigators that eventually they all switch on the same growth-promoting genes.

To test that idea, the Chory team poured over data derived from the new gene-chip technology, in which samples of almost every gene expressed in a cell are spotted onto a tiny glass slide known as a microarray and analyzed under different physiological conditions. Although the analysis sounds complex, it answers a simple question: After stimulation with seven different growth hormones, are the same or different genes activated?

The teamwork model would predict yes, but Chory's team found otherwise. Co-lead authors Jennifer L. Nemhauser, Ph.D., a former postdoctoral fellow in Chory's lab and now assistant professor at the University of Washington in Seattle, and Fangxin Hong, Ph.D., a biostatistician in Chory's lab, found that each of the seven hormones activated largely its own repertoire of target genes. "We found shockingly little overlap," Nemhauser reports.

The microarray data used by Chory's team were collected as part of a multinational effort known as the AtGenExpress project cataloguing gene expression in the model plant Arabidopsis thaliana, which has become the lab mouse of the plant world. The laboratory of Detlef Weigel, Ph.D., an adjunct professor in the Laboratory for Plant Biology at the Salk and a professor at the Max Plank Institute for Developmental Biology in Tόbingen, Germany, is one of the most prolific providers of micro-array data for Arabidopsis.

Participants in the project send results from their lab's microarray analysis of Arabidopsis genes to a publicly available database, where data is shared by colleagues investigating diverse biological questions. "The data was there but nobody had compared the effects of different growth hormones on gene expression side by side," says Nemhauser.

The amount of data analyzed by the Chory group was enormous. The activity of about 22,000 genes, each detected by on average 15 detectors after treatment with the seven hormones, was crunched--not once--but twice, resulting in roughly 14 million data points. "Since we didn't generate any of the data ourselves, we had to perform extensive quality controls to extract meaningful information," explains Hong.

The Salk researchers' analysis revealed that surprisingly few genes were switched on by multiple hormones. And when more than one hormone did initiate a similar program, such as activating genes encoding proteins called "expansins" that loosen plant cell walls to allow for growth, the investigators found that they mobilized different members of the expansin gene family.

"The data analysis showed that there is likely a complex set of interactions between the levels of hormones," explains Chory, "which suggests that long-term effects of all hormone treatments represent a 'domino effect' that resets many systems within the plant."

Combining traditional biological approaches with computational analysis will move plant biologists closer to answering the age-old question of how plants grow, the Salk researchers predict. "Microarrays are very useful for those of us studying physiology and development. They can reveal new interactions, or lack thereof, between biological processes and identify candidates for direct targets of transcription factors controlling development," says Chory.


Story Source:

The above story is based on materials provided by Salk Institute. Note: Materials may be edited for content and length.


Cite This Page:

Salk Institute. "Computational Analysis Shows That Plant Hormones Often Go It Alone." ScienceDaily. ScienceDaily, 12 August 2006. <www.sciencedaily.com/releases/2006/08/060811081428.htm>.
Salk Institute. (2006, August 12). Computational Analysis Shows That Plant Hormones Often Go It Alone. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2006/08/060811081428.htm
Salk Institute. "Computational Analysis Shows That Plant Hormones Often Go It Alone." ScienceDaily. www.sciencedaily.com/releases/2006/08/060811081428.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) — West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) — The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins