Featured Research

from universities, journals, and other organizations

A Wandering Eye: Single Cells Come Running To Form An Eye

Date:
August 27, 2006
Source:
European Molecular Biology Laboratory
Summary:
Eyes are among the earliest recognisable structures in an embryo; they start off as bulges on the sides of tube-shaped tissue that will eventually become the brain. Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg have now discovered that cells are programmed to make eyes early in development and individually migrate to the right place to do so. The study, published in this week's issue of Science, overturns the textbook model of the process.

The development of the eyes in Medaka fish over time seen through a confocal microscope. Eye cells are labelled in green, brain cells in red.
Credit: Image courtesy of European Molecular Biology Laboratory

Eyes are among the earliest recognisable structures in an embryo; they start off as bulges on the sides of tube-shaped tissue that will eventually become the brain. Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg have now discovered that cells are programmed to make eyes early in development and individually migrate to the right place to do so.

The study, published in the journal Science, overturns the textbook model of the process and suggests that also other organs might be formed by the movement of single cells rather than sheets of entire tissues.

Jochen Wittbrodt and his lab at EMBL made the discovery using advanced microscope techniques to track individual cells in the transparent embryos of a small fish called Medaka.

"You can think of the tube as a deflated balloon shaped like a Mickey Mouse," Wittbrodt says. "As the fish grows, the eyes gradually bulge out from the tube, the way Mickey Mouse ears expand as a balloon is filled with air. Most scientists have thought that cells in the neighbouring regions grow to make the bulges. What we've seen is that individual cells migrate to this area from the central region of the tube -- as if to make ears, tiny rubber particles had to fly out from the air inside the balloon."

In 2001, Felix Loosli from Wittbrodt's laboratory discovered a protein called Rx3 that is required for eye formation. Only cells that will become the eye begin producing this molecule early on in development. Martina Rembold, also from Wittbrodt's group, labeled these cells with a fluorescent marker and tracked them using advanced software developed by Richard Adams at the University of Cambridge. Following the cells required recognizing them under the microscope and assembling tens of thousands of images into 3D movies.

"Rx3 plays a crucial role in giving the cells their identity and telling them where to go," says Rembold. "Normally, single cells migrate actively and one-by-one from the centre of the brain to form eyes. But in strains of fish that have no Rx3, no eyes develop and the cells remain inside the brain, because nothing tells them to migrate to the right place."

In the embryo the paths for cell movements are signposted by cues that by attracting or repelling different types of cells guide them into the right direction. Thanks to Rx3 eye cells prefer the cues guiding the way to the eye field. Following them the cells migrate individually against the stream of brain cells that are repelled by the same signal. Without Rx3 eye cells lose their preference and follow the bulk of brain cells into the other direction.

Many other organs are thought to form when sheets of nearby cells expand to form new shapes. The current study suggests that individual cell migration might be a more common phenomenon than scientists have suspected.

"We know that cell migration is important in the formation of many other organs, such as the heart," Wittbrodt says. "We'd like to understand how tissues originate and how cells move in the early embryo and to decipher the cues that tell them where to go. This approach of tracking individual cells will help us to understand these processes better."


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

European Molecular Biology Laboratory. "A Wandering Eye: Single Cells Come Running To Form An Eye." ScienceDaily. ScienceDaily, 27 August 2006. <www.sciencedaily.com/releases/2006/08/060824222623.htm>.
European Molecular Biology Laboratory. (2006, August 27). A Wandering Eye: Single Cells Come Running To Form An Eye. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2006/08/060824222623.htm
European Molecular Biology Laboratory. "A Wandering Eye: Single Cells Come Running To Form An Eye." ScienceDaily. www.sciencedaily.com/releases/2006/08/060824222623.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins