Featured Research

from universities, journals, and other organizations

Synthetic Molecule Causes Cancer Cells To Self-destruct

Date:
August 31, 2006
Source:
University of Illinois at Urbana-Champaign
Summary:
Scientists have found a way to trick cancer cells into committing suicide. The novel technique potentially offers an effective method of providing personalized anti-cancer therapy.

Scientists have found a way to trick cancer cells into committing suicide. The novel technique potentially offers an effective method of providing personalized anti-cancer therapy. Most living cells contain a protein called procaspase-3, which, when activated, changes into the executioner enzyme caspase-3 and initiates programmed cell death, called apoptosis. In cancer cells, however, the signaling pathway to procaspase-3 is broken. As a result, cancer cells escape destruction and grow into tumors.

"We have identified a small, synthetic compound that directly activates procaspase-3 and induces apoptosis," said Paul J. Hergenrother, a professor of chemistry at the University of Illinois at Urbana-Champaign and corresponding author of a paper to be posted online this week ahead of regular publication by the journal Nature Chemical Biology. "By bypassing the broken pathway, we can use the cells' own machinery to destroy themselves."

To find the compound, called procaspase activating compound one (PAC-1), Hergenrother, with colleagues at the U. of I., Seoul National University, and the National Center for Toxicological Research, screened more than 20,000 structurally diverse compounds for the ability to change procaspase-3 into caspase-3.

The researchers tested the compound's efficacy in cell cultures and in three mouse models of cancer. The testing was performed in collaboration with William Helferich, a professor of food science and human nutrition at the U. of I., and Myung-Haing Cho at Seoul National University. The researchers also showed that PAC-1 killed cancer cells in 23 tumors obtained from a local hospital.

Cell death was correlated with the level of procaspase-3 present in the cells, with more procaspase-3 resulting in cell death at lower concentrations of PAC-1.

"This is the first in what could be a host of organic compounds with the ability to directly activate executioner enzymes," said Hergenrother, who is also an affiliate of the Institute for Genomic Biology at the U. of I. "The potential effectiveness of compounds such as PAC-1 could be predicted in advance, and patients could be selected for treatment based on the amount of procaspase-3 found in their tumor cells."

Such personalized medicine strategies are preferential to therapies that rely on general cytotoxins, the researchers say, and could be the future of anti-cancer therapy.

The work was funded by the National Science Foundation, the National Institutes of Health, and the University of Illinois.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Synthetic Molecule Causes Cancer Cells To Self-destruct." ScienceDaily. ScienceDaily, 31 August 2006. <www.sciencedaily.com/releases/2006/08/060828074651.htm>.
University of Illinois at Urbana-Champaign. (2006, August 31). Synthetic Molecule Causes Cancer Cells To Self-destruct. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2006/08/060828074651.htm
University of Illinois at Urbana-Champaign. "Synthetic Molecule Causes Cancer Cells To Self-destruct." ScienceDaily. www.sciencedaily.com/releases/2006/08/060828074651.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins