Featured Research

from universities, journals, and other organizations

Ferns Provide Model For Tiny Motors Powered By Evaporation

Date:
September 15, 2006
Source:
University of Michigan
Summary:
Scientists looked to ferns to create a novel energy scavenging device that uses the power of evaporation to move itself -- materials that could provide a method for powering micro and nano devices with just water or heat.

A cluster of actual sporangium.
Credit: Image courtesy of University of Michigan

Scientists looked to ferns to create a novel energy scavenging device that uses the power of evaporation to move itself -- materials that could provide a method for powering micro and nano devices with just water or heat.

Related Articles


"We've shown that this idea works," said Michel Maharbiz, assistant professor of electrical engineering and computer science and principal investigator in the group that built the device. "If you build these things they will move. The key is to show that you can generate electricity from this."

As often happens, the research started while doctoral student Ruba Borno was exploring another idea entirely. Borno was interested in mimicking biological devices, specifically microchannels that plants use to transport water, so Maharbiz gave her a book on plants.

But something else in the book caught her attention – the section on how ferns spread their spores.

"It's essentially a microactuator," said Maharbiz, meaning that the fern sporangium transforms one form of energy, in this case heat via the evaporation of water, into motion. When the cells in the outer wall of the sporangium were water logged, the sporangium remained closed like a fist, storing the spores safely inside. But when the water in the outer wall evaporated, it caused the sporangium to unfurl and eject the spores into the environment.

The researchers examined some fern leaves under a microscope. They found that when exposed to light or heat or any evaporation-inducing event, the sporangia opened and released the spores.

"Once we saw that, we thought, ‘Oh, we have to build that,'" Maharbiz said.

The method for making the material is simple enough. A wafer is coated with silicone and the hit with light, causing a pattern. The residual pattern is lifted off and that is used for the device. It resembles a curved spine with equally spaced ribs fanning outward from the spine.

To make the device move, Borno said, they load the space between the ribs with water, and when the water evaporates, the surface tension of the water pulls on the tips of the ribs so that the tips move toward each other, straightening out the spine of the device. In this way, the closed device opens wide—it moves.

They plan to add electrical components to the device in an attempt to generate electricity. They predict that the device will be able to generate the same amount of electricity as other scavenging devices, say, a solar cell in a calculator.

The ideal application, Borno said, would be to power a remote sensor where it's impossible to change the batteries regularly.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan. "Ferns Provide Model For Tiny Motors Powered By Evaporation." ScienceDaily. ScienceDaily, 15 September 2006. <www.sciencedaily.com/releases/2006/09/060914154735.htm>.
University of Michigan. (2006, September 15). Ferns Provide Model For Tiny Motors Powered By Evaporation. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2006/09/060914154735.htm
University of Michigan. "Ferns Provide Model For Tiny Motors Powered By Evaporation." ScienceDaily. www.sciencedaily.com/releases/2006/09/060914154735.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Obama's Wildlife Plan Renews Alaska Drilling Debate

Obama's Wildlife Plan Renews Alaska Drilling Debate

Newsy (Jan. 26, 2015) President Obama&apos;s proposal aims to protect more land in the Arctic National Wildlife Refuge, but so far, all that&apos;s materialized is a war of words. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins