Featured Research

from universities, journals, and other organizations

Slippery Salmonella: Proteomics Exposes An Infectious Agent Of Deception

Date:
October 4, 2006
Source:
Pacific Northwest National Laboratory
Summary:
How Salmonella escapes detection by macrophages, turning predator cells to prey complicit in promoting infection, has seemed impossibly complicated, a needle-in-a-haystack proposition involving thousands of proteins, the building blocks that carry out cells' vital functions. Now, applying the high-volume sorting and analytical power of proteomics -- a detailed survey of microbial proteins present in the 24 hours that follow mouse-macrophage infection -- a team from Pacific Northwest National Laboratory has turned up a suspect protein.

PNNL scientists have identified a protein in Salmonella bacteria that enables it to infect immune cells called macrophages. Seen here: Salmonella, isolated from infected macrophrages (mildly color-enhanced).
Credit: Photo credit: Pacific Northwest National Laboratory

Salmonella bacteria, infamous for food poisoning that kills hundreds of thousands worldwide, infect by stealth. They slip unnoticed into and multiply inside macrophages, the very immune system cells the body relies on to seek and destroy invading microbes.

Just how Salmonella escapes detection by macrophages, turning predator cells to prey complicit in promoting infection, has seemed impossibly complicated, a needle-in-a-haystack proposition involving thousands of proteins, the building blocks that carry out cells' vital functions.

Applying the high-volume sorting and analytical power of proteomics--a detailed survey of microbial proteins present in the 24 hours that follow mouse-macrophage infection--a team led by Liang Shi of the Department of Energy's Pacific Northwest National Laboratory has turned up a suspect protein.

The discovery of the protein, dubbed STM3117, is detailed today (Sept. 29) in The Journal of Biological Chemistry. Knocking out the gene that codes for STM3117, the researchers subsequently crippled the microbe's ability to multiply inside macrophages. Shi and colleagues say the protein and two closely related proteins discovered in the study are similar in genetic sequence to those known to make and modify chemicals in the microbe's cell wall called peptidoglycan.

Drug and vaccine designers armed with this mouse-model information can target chemicals or immune responses that disrupt peptidoglycan synthesis and other processes linked to Salmonella's colonization of macrophages in humans, said Joshua Adkins, a co-author on Shi's paper and lead author of a related study in Molecular & Cellular Proteomics last month. A quick identification of these proteins, Adkins added, could help physicians assess the virulence of a given strain.

The candidate proteins were winnowed from among 315 possibilities that emerged through a combination of techniques, culminating in measurements by Fourier-transform mass spectrometry, or FT-MS. A suite of FT-MS instruments customized by co-author and PNNL-based Battelle Fellow Richard D. Smith enabled the team to rapidly separate and identify many proteins at once even as macrophages were being infected.

Most of the initial candidates were designated "house-keeping" proteins, or those whose numbers relative to other proteins remained more or less constant during the course of infection. But 39 proteins shot up in number during bacterial colonization of macrophages, and of those, a handful or so--including STM3117--responded specifically to a macrophage protein associated with resistance to microbial infection. A standard assay called Western blot confirmed the abundance increases of that small group of proteins during infection.

The work was funded by PNNL and the National Institutes of Health's National Institute of Allergy and Infectious Diseases, and much of the work was performed at the PNNL-based W.R. Wiley Environmental Molecular Sciences Laboratory.


Story Source:

The above story is based on materials provided by Pacific Northwest National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Pacific Northwest National Laboratory. "Slippery Salmonella: Proteomics Exposes An Infectious Agent Of Deception." ScienceDaily. ScienceDaily, 4 October 2006. <www.sciencedaily.com/releases/2006/09/060929093337.htm>.
Pacific Northwest National Laboratory. (2006, October 4). Slippery Salmonella: Proteomics Exposes An Infectious Agent Of Deception. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2006/09/060929093337.htm
Pacific Northwest National Laboratory. "Slippery Salmonella: Proteomics Exposes An Infectious Agent Of Deception." ScienceDaily. www.sciencedaily.com/releases/2006/09/060929093337.htm (accessed September 17, 2014).

Share This



More Plants & Animals News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins