Featured Research

from universities, journals, and other organizations

Researchers Find Why Ultramarine Blue Fades

Date:
October 10, 2006
Source:
New York University
Summary:
The restoration of Michelangelo's frescoes on the ceiling of the Sistine Chapel has left visitors in awe of the work's original majesty -- notably the brilliance of the blue that graces the Last Judgment's sky. Recent investigations into this shade of blue -- ultramarine blue -- have brought to light the pigment's tendency to fade. Researchers at New York University and Pratt Institute now have the answer to why it fades.

The Sistine Chapel's "Last Judgment" Ultramarine pigments have been used pervasively by artists starting in the late 13th century. Jerschow, Del Federico and coworkers provide key insight on why and how color fades in ultramarine pigments.
Credit: Image courtesy of New York University

The 20-year restoration of Michelangelo's frescoes on the ceiling of the Sistine Chapel has left visitors in awe of the work's original majesty--notably the brilliance of the blue that graces the Last Judgment's sky. Recent investigations into this shade of blue--ultramarine blue--have brought to light the pigment's tendency to fade. Is it possible that the longevity of such a masterpiece as the Last Judgment could be in peril?

Related Articles


Researchers at New York University and Pratt Institute now have the answer to why it fades, which gives the art world direction on how to protect the works of past and future masters.

The natural ultramarine pigment, obtained from the semi-precious stone lapis lazuli, has been one of the most valued pigments by European painters since the late 13th century. Before the 19th century, the only known source of lapis lazuli was in the quarries of Badakhshan (northeastern Afghanistan), a site visited and described by Marco Polo. He wrote: "There is a mountain in that region where the finest azure [lapis lazuli] in the world is found. It appears in veins like silver streaks." Lapis lazuli provided not only a vibrant blue color unmatched by any other pigment available at the time, but it added a divine nature to the artwork in which it was used. Since it was valued more highly than gold, its use typically conveyed the high status of a work's commissioner. Ultramarine was the pigment often reserved to paint the mantel of the Virgin Mary.

Instances of fading of ultramarine pigments are known, but the mechanism of color alteration of the pigments is not understood--a process that served as the focal point of the researchers' study. In their work, Alexej Jerschow, an assistant professor of chemistry at NYU, Eleonora Del Federico, an associate professor of chemistry at Pratt Institute, and their co-workers examined ultramarine pigments, which are made up from frameworks of aluminum and silicon atoms. The intense blue color is formed by small molecules made up from sulfur trapped within this framework. The researchers found that upon color degradation the framework breaks apart and releases the color-forming molecules.

The research team reached this conclusion by measuring the nuclear magnetic resonance (NMR) signals of the aluminum and silicon atoms in the framework. This method is akin to magnetic resonance imaging, but is used by chemists to understand the structure and geometry of molecules and materials. This procedure allowed the researchers to determine the concentration of these color-forming molecules. Similar analysis of fresco samples stored under accelerated degradation conditions revealed that the ultramarine pigment framework structures break apart and set free the color-forming molecules. Understanding the process by which ultramarine blue fades will allow further research to identify proper art conservation techniques.

"Apart from the scientific interest in this work, these activities have created an exciting opportunity for both science and arts students to transcend discipline boundaries," said Jerschow. "These unique investigations promise to have tremendous impact on our understanding and prevention of the chemical processes that underlie the slow--often irreversible--decay of our cultural heirlooms."

The research on ultramarine pigments is part of a larger collaborative initiative among the NYU Chemistry Department, Pratt Institute, and the Metropolitan Museum of Arts' associate research scientist Dr. Silvia Centeno. The research team is currently also investigating the origin of lead-white flaking in illuminated manuscripts and lead-soap formation in traditional oil paintings.

An important aspect of this work is related to bringing the experimental techniques right into museums, a revolutionary step that will allow researchers to analyze delicate material onsite so as to maximize conservation while protecting unique works of art.

With funds from the Alfred P. Sloan Foundation, Pratt Institute acquired a portable NMR micro-spectrometer for on-site analysis both at Pratt and at the Met under the supervision of Del Federico and Centeno. While the technical capabilities of this instrument are more limited than for regular NMR spectrometers, the portable device allows one to investigate artwork non-invasively. In-situ NMR analysis will be conducted on the Metropolitan Museum of Art's collection beginning this fall under the supervision of Centeno. This component will investigate this new technology's potential application to the study of ink and paint materials in paper and parchment, as well as its ability to characterize the degradation processes.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Cite This Page:

New York University. "Researchers Find Why Ultramarine Blue Fades." ScienceDaily. ScienceDaily, 10 October 2006. <www.sciencedaily.com/releases/2006/10/061002214727.htm>.
New York University. (2006, October 10). Researchers Find Why Ultramarine Blue Fades. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2006/10/061002214727.htm
New York University. "Researchers Find Why Ultramarine Blue Fades." ScienceDaily. www.sciencedaily.com/releases/2006/10/061002214727.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins