Featured Research

from universities, journals, and other organizations

Good, Bad Blood Cells: They Form Clots, Fight Inflammation

Date:
October 12, 2006
Source:
University of Utah Health Sciences Center
Summary:
Two human blood cells that help fight blood loss, infection and inflammation are responsible as well for starting a series of molecular events that results in overproduction of Cox-2, an enzyme involved in heart attack, stroke, atherosclerosis and other inflammatory diseases.

It's a case of miscommunication with catastrophic consequences.

Two human blood cells that help fight blood loss, infection, and inflammation are responsible as well for starting a series of molecular events that results in overproduction of Cox-2, an enzyme involved in heart attack, stroke, atherosclerosis, and other inflammatory diseases.

The finding by researchers at the University of Utah and University of South Carolina means scientists may be able to develop drugs to prevent or lessen the severity of inflammatory diseases, such as atherosclerosis and heart attack. Discovery of the signaling mechanism will be invaluable in sorting out the roles Cox-2 plays in those diseases, according to Guy A. Zimmerman, M.D., University of Utah School of Medicine professor of internal medicine, senior author of the study detailing the research.

"This discovery has immediate clinical relevance," said Zimmerman, director of the medical school's Program in Human Molecular Biology and Genetics. "This opens the potential of developing medications for both the prevention of long-term atherosclerosis (clogged arteries) and the acute events of heart attack."

The study, reported in the Journal of Clinical Investigation online, also was led by Dan A. Dixon, a former member of Zimmerman's lab now at South Carolina.

The researchers identified a biochemical signaling pathway between human blood platelets, cells essential for blood clotting, and monocytes, white blood cells the body makes to fight inflammation and infection. But, according to Zimmerman, the biological systems involved in blood clotting and inflammation also are related to a host of human diseases.

The Utah and South Carolina researchers discovered that the blood platelet signals the monocyte two times, triggering production of Cox-2, an enzyme that helps regulate inflammation. But when blood platelets and monocytes get their signals crossed, it can lead to overproduction of the enzyme and result in cardiovascular diseases that strike and kill millions of people worldwide.

Zimmerman compares the signaling between blood platelets and monocytes to a pair of molecular control switches that turn Cox-2 production on and off. "It's a mechanism for precise control of Cox-2 production," he said. "But if one of the switches is turned on too high or low, it can lead to inappropriate production of Cox-2 in disease."

The first signal from the platelet tells the monocyte to turn on the gene that provides the instructions necessary to make Cox-2. These instructions are carried in small molecule called messenger RNA. When the blood platelet signals the monocyte, the cell decodes the instructions from the Cox-2 gene in a process called transcription. This results in production of messenger RNA that specifically codes for Cox-2. After the messenger RNA is transcribed, the blood platelet then sends a second signal to the monocyte that regulates stability of the Cox-2 messenger RNA and further decoding of the genetic information in a process called translation.

This results in production of the Cox-2 protein and controls how much, and at what time point, it is produced.

Drugs called non-steroidal anti-inflammatory agents, which inhibit production of Cox-2 and reduce inflammation, are some of the most widely used medications in the world for arthritis and other inflammatory diseases. But some of these drugs, also called Cox-2 inhibitors, such as Vioxx, increase the chance of heart attack.

Identifying the signaling mechanism between blood platelets and monocytes makes it possible to develop new drugs to modify Cox-2 production. "Knowing these steps gives you an initial blueprint about how to modify Cox-2," Zimmerman said. Understanding this mechanism may enable researchers to develop drugs that help people during a heart attack, or prevent heart attack, stroke or other inflammatory diseases.

The study's other co-authors from the University of Utah include Andrew S. Weyrich, Ph.D., research associate professor of internal medicine; Mark L. Martinez, M.D., visiting instructor of internal medicine; and Neal D. Tolley of the Program in Human Molecular Biology and Genetics.

Steven M. Prescott, M.D., formerly with the University of Utah medical school and the University's Huntsman Cancer Institute, also co-authored the study. Zimmerman and Prescott were part of an earlier collaboration at the University that was one of the first to clone the Cox-2 gene.

Zimmerman noted clinical trials of drugs that target the cross talk between platelets and monocytes, and the Cox-2 pathway, are in the planning stages.


Story Source:

The above story is based on materials provided by University of Utah Health Sciences Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Utah Health Sciences Center. "Good, Bad Blood Cells: They Form Clots, Fight Inflammation." ScienceDaily. ScienceDaily, 12 October 2006. <www.sciencedaily.com/releases/2006/10/061007111534.htm>.
University of Utah Health Sciences Center. (2006, October 12). Good, Bad Blood Cells: They Form Clots, Fight Inflammation. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2006/10/061007111534.htm
University of Utah Health Sciences Center. "Good, Bad Blood Cells: They Form Clots, Fight Inflammation." ScienceDaily. www.sciencedaily.com/releases/2006/10/061007111534.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins