Featured Research

from universities, journals, and other organizations

Key Gene Controlling Kidney Development Found

Date:
October 14, 2006
Source:
St. Jude Children's Research Hospital
Summary:
A gene called Six2 plays a critical role in the development of the kidney by keeping a population of "parent" stem cells constantly available to produce the differentiated cells that give rise to specialized parts of the organ, according to investigators at St. Jude Children's Research Hospital.

A gene called Six2 plays a critical role in the development of the kidney by keeping a population of "parent" stem cells constantly available to produce the differentiated cells that give rise to specialized parts of the organ, according to investigators at St. Jude Children's Research Hospital. Differentiation is the process by which a progenitor (unspecialized) cell develops characteristics specific to its job in the body.

The kidney stem cells, called mesenchymal blastemal cells, are the source of cells triggered by chemical signals to differentiate into nephrons--the structures in the kidney that cleanse the blood of waste. The nephrons later become attached to ducts--tubes that collect the filtered blood as urine and direct it to the bladder. The St. Jude team showed that Six2 works by preventing some of the precursor cells from responding to these signals. This ensures there will be a continual source of undifferentiated stem cells available to maintain the growth of the kidney.

"Our work shows that Six2 is critical to preventing the developing kidney from running out of stem cells and collapsing into a mass of underdeveloped tissue," said Guillermo Oliver, Ph.D., a member of the St. Jude Genetics and Tumor Cell Biology Department. Oliver is senior author of a report on this finding that appears in the online issue of The EMBO Journal.

"Our discovery of Six2's role in the developing kidney suggests that a similar mechanism exists in other developing organs," said Michelle Self, the doctoral student in Oliver's laboratory who did most of the work on this project.

The St. Jude team showed that the kidneys in developing mice lacking the Six2 gene were remarkably smaller than normal mice and were non-functional at birth. In addition, they produced an abnormal excess in the number of nephrons that in turn produced a useless mass of tissue. Furthermore, the remaining precursor cells underwent apoptosis (cell suicide), further depleting the population of stem cells that could give rise to differentiated cells needed to form the kidney.

The researchers also found that Six2 works by suppressing a cascade of genetic interactions normally triggered by a gene called Wnt4, which usually drives the normal development of kidneys.

The other authors of this study include Oleg Lagutin, Beth Bowling, Jaime Hendrix (St. Jude) and Yi Cai and Gregory Dressler (University of Michigan). This work was supported in part by the National Institutes of Health, a Cancer Center Support grant, ALSAC and the Polycystic Kidney Disease Foundation.


Story Source:

The above story is based on materials provided by St. Jude Children's Research Hospital. Note: Materials may be edited for content and length.


Cite This Page:

St. Jude Children's Research Hospital. "Key Gene Controlling Kidney Development Found." ScienceDaily. ScienceDaily, 14 October 2006. <www.sciencedaily.com/releases/2006/10/061012185842.htm>.
St. Jude Children's Research Hospital. (2006, October 14). Key Gene Controlling Kidney Development Found. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2006/10/061012185842.htm
St. Jude Children's Research Hospital. "Key Gene Controlling Kidney Development Found." ScienceDaily. www.sciencedaily.com/releases/2006/10/061012185842.htm (accessed August 30, 2014).

Share This




More Health & Medicine News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
3 Things To Know About The Ebola Outbreak's Progression

3 Things To Know About The Ebola Outbreak's Progression

Newsy (Aug. 29, 2014) Here are three things you need to know about the deadly Ebola outbreak's progression this week. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins