Featured Research

from universities, journals, and other organizations

Physicists Track The Random Walks Of Ellipsoids, Test 'Lost' Theory Of Brownian Motion

Date:
October 30, 2006
Source:
University of Pennsylvania
Summary:
Research carried out at the University of Pennsylvania has definitively measured and described the Brownian motion of an isolated ellipsoidal particle, completing a path laid out by Einstein 100 years ago when he first described rotational Brownian motion for spheres in water. The findings of the Penn group rediscovered ideas about rotational-translational coupling first published by French physicist Francis Perrin in the 1930s, ideas that were apparently "forgotten" by the science community.

Twenty seconds of a measured random walk trajectory for a micrometer-sized ellipsoid undergoing Brownian motion in water. The ellipsoid orientation, labeled with rainbow colors, illustrates the coupling of orientation and displacement and shows clearly that the ellipsoid diffuses faster along its long axis compared to its short axis.
Credit: Image courtesy of University of Pennsylvania

Research carried out at the University of Pennsylvania has definitively measured and described the Brownian motion of an isolated ellipsoidal particle, completing a path laid out by Einstein 100 years ago when he first described rotational Brownian motion for spheres in water.

Related Articles


Brownian motion, the tiny random movements of small objects suspended in a fluid, has served as a paradigm for concepts of randomness ranging from noise in light detectors to fluctuations in the stock market. Using digital video microscopy, the researchers directly observed the twisty "random walks" arising from the combined effects of random rotations and displacements of ellipsoids in water.

"Brownian motion arises from the aggregate effect of the random collisions of many molecules with suspended objects. It is such a profound and fundamental phenomena that, as a physicist, I want to learn everything about it," said Arjun Yodh, professor in Penn's Department of Physics and Astronomy in the School of Arts and Sciences. "Our work explored the movement of rod-like particles in order to understand how their spinning motion affects the displacement or translation of their centers."

As Einstein predicted in his 1906 paper, the rotation of spherical particles does not affect their translation. On the other hand, the rotation of non-spherical particles affects their translation, and, since most Brownian particles are not spherical, they experience cross-talk between translation and rotation

The findings of the Penn group, reported in the journal Science, rediscovered ideas about rotational-translational coupling first published by French physicist Francis Perrin in the 1930s, ideas that were apparently "forgotten" by the science community. Perrin's father, Jean Perrin won the Nobel Prize in 1926 for the first experimental observations confirming Einstein's theories about Brownian motion.

"One of the exciting aspects of this work is the precise agreement between a relatively simple theory and experiments. We developed the theory at Penn but later found many of our results in the forgotten French papers by Perrin," said Tom Lubensky, professor and chair of Penn's Department of Physics and Astronomy and co-author of the Science paper. "Perrin's work is largely unknown today, at least in part because experiments to verify it could not be done in his time."

The Penn researchers employed state-of-art digital imaging technology and computer image analysis for their experiments. Using a charge-couple device camera, they recorded the orientations and positions of a single, micrometer-sized plastic ellipsoid particle suspended in water at a sequence of times.

The experiments confirmed the theory's curious description of how an ellipsoid's random motions are different from those of spherical particles. On average, particles undergoing Brownian motion do not move very far. For example, in one second, the largest number of particles will stay very close, say within one micron, of their starting point; a smaller number will move between one micron and two microns; a still smaller number will move between two microns and three microns, and so on. A plot of the number of particles traveling specific distances yields the famous bell-shaped or Gaussian curve from statistics. The Penn researchers found that the same experiment, carried out on ellipsoidal particles, produces a curve that is not Gaussian.

"Since ellipsoids are longer than they are wide, they experience more water resistance going in one direction than the other," said Yilong Han, a post-doc in Yodh's research group. "These effects are larger in two-dimensions than in three, and the coupling of the rotational movement --- spinning --- with the translational movement --- the distance traveled --- give rise to the weirdly non-Gaussian behavior we observed."

The Penn researchers were joined in their work by visiting scholar Maurizio Nobili of Universite Montpelier II in France.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania. "Physicists Track The Random Walks Of Ellipsoids, Test 'Lost' Theory Of Brownian Motion." ScienceDaily. ScienceDaily, 30 October 2006. <www.sciencedaily.com/releases/2006/10/061026185204.htm>.
University of Pennsylvania. (2006, October 30). Physicists Track The Random Walks Of Ellipsoids, Test 'Lost' Theory Of Brownian Motion. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2006/10/061026185204.htm
University of Pennsylvania. "Physicists Track The Random Walks Of Ellipsoids, Test 'Lost' Theory Of Brownian Motion." ScienceDaily. www.sciencedaily.com/releases/2006/10/061026185204.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins