Featured Research

from universities, journals, and other organizations

Researchers Turn Cord Blood Into Lung Cells

Date:
November 13, 2006
Source:
University of Minnesota
Summary:
Researchers at the University of Minnesota have, for the first time, coaxed umbilical cord blood stem cells to differentiate into a type of lung cell.

Researchers at the University of Minnesota have, for the first time, coaxed umbilical cord blood stem cells to differentiate into a type of lung cell.

Related Articles


The cord blood cells differentiated into a type of lung cell called type II alveolar cells. These cells are responsible for secreting surfactant, a substance which allows the air sacs in the lungs to remain open, allowing air to move in and out of the sacs. The cells are also responsible for helping to repair the airway after injury.

"In the future, we may be able to examine cord blood from babies who have lung diseases, such as cystic fibrosis, to do more research to understand how these diseases evolve as well as to develop better medical treatments," said David McKenna, M.D., assistant professor of lab medicine and pathology and medical director of the Clinical Cell Therapy Lab at the University of Minnesota Medical Center, Fairview.

The research paper is currently available online, and will be published in the Nov. 7, 2006, issue of the journal Cytotherapy.

Type II alveolar cells develop late in fetal development, which is why some premature babies are born with underdeveloped lungs. The cells and the air sacs as a whole continue to mature and develop through a child's first few years of life.

Now the researchers will try to better characterize the cells, so that in the future, the cells could be used as a research tool to better understand lung development and disease. The cells may also be useful as a way to test potential new drugs.

To differentiate the lung cells from the cord blood, McKenna and his team first derived the Multi-Lineage Progenitor CellTM (MLPCTM) from umbilical cord blood. This stem cell, which was first isolated and characterized by BioE®, Inc., St. Paul, is a precursor cell that can be expanded in culture, then differentiated into different types of tissue representative of all three embryonic lineages, endoderm, mesoderm and ectoderm.

In this series of experiments, McKenna and his group cultured the MLPC and differentiated it into the lung cells, an endoderm-type cell. By testing the cells that grew with various methods, they were able to find cells that exhibited key markers present in type II alveolar cells.

The research was funded by BioE, Inc.


Story Source:

The above story is based on materials provided by University of Minnesota. Note: Materials may be edited for content and length.


Cite This Page:

University of Minnesota. "Researchers Turn Cord Blood Into Lung Cells." ScienceDaily. ScienceDaily, 13 November 2006. <www.sciencedaily.com/releases/2006/11/061101150949.htm>.
University of Minnesota. (2006, November 13). Researchers Turn Cord Blood Into Lung Cells. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2006/11/061101150949.htm
University of Minnesota. "Researchers Turn Cord Blood Into Lung Cells." ScienceDaily. www.sciencedaily.com/releases/2006/11/061101150949.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins