Featured Research

from universities, journals, and other organizations

Himalayan Megaquakes Powered By Elastic Energy In Tibetan Plateau

Date:
November 9, 2006
Source:
University of Colorado at Boulder
Summary:
Computer simulations indicate that Himalayan megaearthquakes must occur every 1,000 years or so to empty a reservoir of energy in southern Tibet not released by smaller earthquakes, according to a paper that will appear in the Nov. 9 issue of the journal Nature.

Computer simulations indicate that Himalayan mega-earthquakes must occur every 1,000 years or so to empty a reservoir of energy in southern Tibet not released by smaller earthquakes, according to a paper that will appear in the Nov. 9 issue of the journal Nature.

Colorado researchers Roger Bilham and Nicole Feldl co-authored the paper "Great Himalayan Earthquakes and the Tibetan Plateau." Their research was funded by the National Science Foundation.

Bilham is a University of Colorado at Boulder geology professor and associate director of the Cooperative Institute for Research in Environmental Sciences or CIRES. Feldl is a research scientist at UNAVCO, a national Global Positioning System consortium founded by CU-Boulder and funded by the National Science Foundation.

In their report, the researchers reveal that earthquakes in the past 200 years in the central Himalaya, though catastrophic, have released relatively modest amounts of the energy of India's collision with the Tibetan plateau compared to three massive earthquakes that occurred in medieval times.

They base their claims on GPS point motions across the Himalaya that indicate where strain energy is stored. The researchers ran computer simulations on how the energy was released, which yielded clues on the approximate recurrence intervals of past Himalayan earthquakes.

In the past, experts resorted to estimating the timing of future earthquakes from the slip that occurred in former ones. However, the new information should help scientists forecast future seismic activity in the region, Bilham said.

"We had always assumed that earthquakes in the region were driven by the release of energy accumulating near the Greater Himalaya," he said. "Our recent calculations suggest that a substantial volume of the southern Tibetan plateau plays a significant role in driving great ruptures. Exhumation of ancient archives and surface ruptures are now needed to show the details of this process in the past 2,000 years to help us forecast future earthquakes - and save lives."

The Greater Himalaya forms a 2,000-kilometer arc separating northern India from Tibet and boasts the world's highest peaks, including the loftiest of all, Mount Everest, at more than 29,000 feet.

The region is highly prone to earthquakes and has produced some of the deadliest on earth. Last year, 74,000 people died in the Kashmir region during a relatively modest earthquake, 7.6 magnitude.

Computer simulations based on GPS data in the region reveal that the Tibetan plateau contains an invisible reservoir of "elastic strain energy" that is partly depleted each time an earthquake hits the region.

The researchers contend that only gigantic earthquakes could fully deplete this reservoir of strain. Their models also show what they call "two puzzling features of plate boundary seismicity."

"Our findings show that great earthquakes - those with a magnitude of 8.2 or greater - can re-rupture regions that already have ruptured in recent smaller earthquakes, or those with a magnitude of 7.8 or below," Bilham said.

Mega earthquakes, those with a magnitude of 8.4 or greater, apparently occur every 1,000 years and are driven by residual strain following centuries of smaller earthquakes, or those with a magnitude of 7.6 or lower, according to the Nature report.

The CU-Boulder researchers said conditions exist in the Himalaya today that could drive four or more earthquakes measuring more than 8.0 on the Richter scale. However, they added, these earthquakes would be even deadlier if they were delayed for another 500 years and occurred as mega-quakes exceeding 8.4 magnitude on the Richter scale.


Story Source:

The above story is based on materials provided by University of Colorado at Boulder. Note: Materials may be edited for content and length.


Cite This Page:

University of Colorado at Boulder. "Himalayan Megaquakes Powered By Elastic Energy In Tibetan Plateau." ScienceDaily. ScienceDaily, 9 November 2006. <www.sciencedaily.com/releases/2006/11/061108154535.htm>.
University of Colorado at Boulder. (2006, November 9). Himalayan Megaquakes Powered By Elastic Energy In Tibetan Plateau. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2006/11/061108154535.htm
University of Colorado at Boulder. "Himalayan Megaquakes Powered By Elastic Energy In Tibetan Plateau." ScienceDaily. www.sciencedaily.com/releases/2006/11/061108154535.htm (accessed August 28, 2014).

Share This




More Earth & Climate News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com
Calif. Quake Underscores Need for Early Warning

Calif. Quake Underscores Need for Early Warning

AP (Aug. 26, 2014) Researchers at UC Berkeley are testing a prototype of an earthquake early warning system that California is pursuing years after places like Mexico and Japan already have them up and running. (August 26) Video provided by AP
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

AFP (Aug. 25, 2014) A factory in the industrial state of Sao Paulo produces genetically modified mosquitoes to fight dengue, a deadly tropical disease more prevalent in Brazil than anywhere else in the world. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins