Featured Research

from universities, journals, and other organizations

Scientists Learning To Create Nanomaterials Based On Micro-algae Patterns

Date:
December 7, 2006
Source:
Georgia Institute of Technology
Summary:
Researchers at the Georgia Institute of Technology have developed a technique to study how unicellular micro-algae, known as diatoms, create their complex cell walls. Researchers hope to learn how diatoms assemble these nanometer-patterned, intricate micro-architectures to find better methods for creating nanomaterials in the laboratory.

Researchers hope to find better methods for creating nanomaterials based on intricate cell-wall patterns assembled by diatoms, such as Thalassiosira pseudonana.
Credit: Image courtesy of Nils Kröger

Researchers at the Georgia Institute of Technology have developed a technique to study how unicellular micro-algae, known as diatoms, create their complex cell walls. Researchers hope to learn how diatoms assemble these nanometer-patterned, intricate micro-architectures to find better methods for creating nanomaterials in the laboratory.

"Diatoms are nature's most gifted nanotechnologists," said Nils Kröger, an assistant professor in Georgia Tech's School of Chemistry and Biochemistry and the School of Materials Science and Engineering. "We want to learn how diatom cell walls are produced because human technology can't make something that intricate by self-assembly processes and under ambient conditions."

Diatoms are single-celled organisms that frequently appear as a brown, slippery coating on submerged stones and as phytoplankton in the open ocean. Tiny pores in the cell wall allow diatoms to exchange nutrients with the environment and remain at the surface of the water to absorb sunlight for photosynthesis. Diatom photosynthesis is responsible for 20 percent of the world's organic carbon. The pores allow diatoms to be lightweight, but their cell wall gives them a strong mechanical structure. The strength of the cell wall comes from amorphous silica, or silicon dioxide (SiO2) -- virtually the same material as glass.

Diatom cell walls show an enormous diversity in form, most of them amazingly beautiful and ornate, depending on specific biomolecules produced by the diatom, Kröger explained. Previous research has shown that uniquely modified proteins called silaffins and extremely long polyamine chains play a role in the structural design of the cell wall. Kröger hypothesizes that the structure of the diatom silica critically depends on the type of silaffin present within the diatoms' silica-producing organic matrix. Therefore, he expects that changing the "silaffin equipment" of a diatom cell should result in novel silica nanostructures.

Kröger and collaborator Nicole Poulsen, a postdoctoral researcher in the School of Chemistry and Biochemistry, have developed a technique to genetically engineer diatoms. The process allows insertion of mutated or foreign genes into the genome of the diatom Thalassiosira pseudonana. Kröger believes this technique will enable the creation of diatoms with novel silica structures. He will describe the technique in an invited presentation on Dec. 12 at the fall meeting of the American Geophysical Union.

Genetic manipulation of diatoms will increase the understanding of their cellular biochemistry and potentially enable the use of these organisms for the production of commercially valuable compounds and materials, Kröger said. But inserting a gene through the strong silica cell wall is difficult. The wall must be penetrated, but not broken, and the foreign gene must be accepted into the diatom's genome, he explained.

To insert the genes, such as those that encode different silaffins, through the diatom cell wall, Kröger and Poulsen use a technique called microparticle bombardment. DNA-coated tungsten particles are "shot" on the diatoms under high heliumpressure, thus enabling them to penetrate the strong diatom cell wall. The diatom incorporates the introduced DNA into its genome, and selection of the transfected cells is achieved using the antibiotic nourseothricin. When new genes are introduced with the technique developed by Kröger and Poulsen, they can be expressed constantly or be turned on and off when necessary. Specific details of the technique were published in the October 2006 issue of the Journal of Phycology.

Kröger and Poulsen established this technique for the diatom Thalassiosira pseudonana because it is currently the only diatom species with a completely sequenced genome.

"Knowing the genome sequence and having established a method for genetic modification of this organism means we can, in principle, analyze the function of every gene and the protein that it encodes," Kröger said. "This will eventually enable us to identify the key cellular biomolecules involved in creating the strong, intricately patterned diatom cell walls."

The research has been supported by a grant from the Office of Naval Research and the Defense Advanced Research Projects Agency.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology. "Scientists Learning To Create Nanomaterials Based On Micro-algae Patterns." ScienceDaily. ScienceDaily, 7 December 2006. <www.sciencedaily.com/releases/2006/12/061207083806.htm>.
Georgia Institute of Technology. (2006, December 7). Scientists Learning To Create Nanomaterials Based On Micro-algae Patterns. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2006/12/061207083806.htm
Georgia Institute of Technology. "Scientists Learning To Create Nanomaterials Based On Micro-algae Patterns." ScienceDaily. www.sciencedaily.com/releases/2006/12/061207083806.htm (accessed April 25, 2014).

Share This



More Matter & Energy News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Next Stop America for France's TGV?

Next Stop America for France's TGV?

Reuters - Business Video Online (Apr. 24, 2014) — General Electric keeps quiet on reports it's in talks to buy French turbine and train maker Alstom. Ivor Bennett reports on what could be an embarrassing rumour for the French government, with business-friendly reforms proving a hard sell. Video provided by Reuters
Powered by NewsLook.com
Raw: Obama Plays Soccer With Japanese Robot

Raw: Obama Plays Soccer With Japanese Robot

AP (Apr. 24, 2014) — President Obama briefly played soccer with a robot during his visit to Japan on Thursday. The President has been emphasizing technology along with security concerns during his visit. (April 24) Video provided by AP
Powered by NewsLook.com
Obama Encourages Japanese Student-Scientists

Obama Encourages Japanese Student-Scientists

AP (Apr. 24, 2014) — President Obama spoke with student innovators in Japan and urged them to take part in increased opportunities for student exchanges with the US. (April 24) Video provided by AP
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) — The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins