Featured Research

from universities, journals, and other organizations

Targeting A Single Gene Could Inhibit Bone Decay And Stimulate Bone Growth

Date:
December 9, 2006
Source:
University of Pennsylvania School of Medicine
Summary:
Researchers at the University of Pennsylvania's School of Medicine have found by targeting the function of a single gene that it is possible to inhibit bone decay while simultaneously stimulating bone formation. This concept may lead to drug treatments for osteoporosis and other bone diseases. Senior author Yongwon Choi, PhD, professor of Pathology and Laboratory Medicine at the University of Pennsylvania and colleagues report their findings in the December issue of Nature Medicine.

Researchers at the University of Pennsylvania's School of Medicine have found by targeting the function of a single gene that it is possible to inhibit bone decay while simultaneously stimulating bone formation. This concept may lead to drug treatments for osteoporosis and other bone diseases. Senior author Yongwon Choi, PhD, professor of Pathology and Laboratory Medicine at the University of Pennsylvania and colleagues report their findings in the December issue of Nature Medicine.

Osteoporosis is a major quality of life issue for the millions of senior citizens in the United States and will only become a bigger problem as the population continues to age.

"The main challenge is how to prevent bone decay while also encouraging bone growth," said Choi.

The basic principles behind bone metabolism are largely understood, hence a handful of drugs treating osteoporosis are available. Most drugs inhibit osteoclasts, which cause bone decay. But there is also at least one that stimulates osteoblasts, enhancing bone formation. A combined treatment will not only prevent the occurrence of osteoporosis, but also make the quality of bone even better.

"Our discovery proves that inhibiting osteoclasts while simultaneously stimulating new bone formation can be done."

Bone health is maintained by the balanced activities of osteoblasts and osteoclasts. The study shows that the inactivation of gene Atp6v0d2 in mice results in dramatically increased bone mass due to defective osteoclasts as well as enhanced bone formation. These findings may provide some clarity into the regulation of bone metabolism and show that targeting the function of a single gene could possibly inhibit bone decay while stimulating bone formation.

"We have finally proven the theory that targeting one gene can do both," said Choi. "Now that we have demonstrated a new approach that is theoretically attainable, one that combines the best of both worlds, we can go to work on the genes up and down stream from our target gene. If we can find a way to get to our target gene with a drug we may be able to help the millions of seniors with osteoporosis."

Dr. Choi was recently named the 2006 winner of Korea's prestigious Ho-Am Prize for his work in osteoimmunology. The award recognizes scholars and researchers who make outstanding achievements by international standards while encouraging future activities of even higher levels and who also present exemplary models for the academic community. Choi, who is originally from Seoul, South Korea, has been at the University of Pennsylvania since 2001.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Targeting A Single Gene Could Inhibit Bone Decay And Stimulate Bone Growth." ScienceDaily. ScienceDaily, 9 December 2006. <www.sciencedaily.com/releases/2006/12/061209083655.htm>.
University of Pennsylvania School of Medicine. (2006, December 9). Targeting A Single Gene Could Inhibit Bone Decay And Stimulate Bone Growth. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2006/12/061209083655.htm
University of Pennsylvania School of Medicine. "Targeting A Single Gene Could Inhibit Bone Decay And Stimulate Bone Growth." ScienceDaily. www.sciencedaily.com/releases/2006/12/061209083655.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins