Featured Research

from universities, journals, and other organizations

Flexible Electronics Advance Boosts Performance, Manufacturing

Date:
December 15, 2006
Source:
Stanford University
Summary:
In a study published in the December 14 issue of the journal Nature, researchers at Stanford and the University of California-Los Angeles point the way toward manufacturing truly useful flexible electronics with high-performance organic transistors.

In a study published in the Dec. 14 issue of the journal Nature, researchers at Stanford and the University of California-Los Angeles point the way toward manufacturing truly useful flexible electronics with high-performance organic transistors.
Credit: Image courtesy of Stanford University

Flexible electronics made with organic, or carbon-based, transistors could enable technologies such as low-cost sensors on product packaging and ''electronic paper'' displays as thin and floppy as a placemat. But the best mass-producible organic transistors so far have only milquetoast performance, and products using them have yet to come to market. In a study published in the Dec. 14 issue of the journal Nature, researchers at Stanford and the University of California-Los Angeles point the way toward manufacturing truly useful flexible electronics with high-performance organic transistors.

''This work demonstrates for the first time that organic single crystals can be patterned over a large area without the need to laboriously handpick and fabricate transistors one at a time,'' says Stanford chemical engineering Associate Professor Zhenan Bao.

The study's lead author is Alejandro Briseno, who was a master's student at UCLA performing part of this research at Stanford. He is now a doctoral student at the University of Washington. The study's other authors are Stefan C. B. Mannsfeld, Mang M. Ling, Shuhong Liu, Colin Reese, Mark E. Roberts and Bao at Stanford, and Ricky J. Tseng, Yang Yang and Fred Wudl at UCLA.

Single-crystal organic transistors are fast-engineers say they have a high ''charge carrier mobility.'' This means that when they are ''switched on,'' electrical current can move through the crystal very quickly. Organic thin-film transistors, carbon-based versions of the kind of transistor commonly found in flat panel computer monitors, have only about a third the charge mobility. Researchers have nevertheless favored the thin-film transistors because they could be manufactured en masse, while single-crystal devices always had to be made by manual selection and placing of individual crystals.

Stamping feat

The trick to being able to manufacture-rather than handcraft-large arrays of single-crystal transistors was to devise a method for printing patterns of transistors on surfaces such as silicon wafers and flexible plastic. The first step is to put electrodes on these surfaces wherever a transistor is desired. Then the researchers make a stamp with the desired pattern out of a polymer called polydimethylsiloxane. After coating the stamp with a crystal growth agent called octadecyltriethoxysilane (OTS) and pressing it onto the surface, the researchers can then introduce a vapor of the organic crystal material onto the OTS-patterned surfaces. The vapor will condense and grow semiconducting organic single crystals only where the agent lies. With the crystals bridging the electrodes, transistors are formed.

In the experiments reported in the paper, the team made arrays out of several different crystal materials including rubrene (it makes the fastest transistors) and even ''buckyballs,'' soccer balls made out of 60 carbon atoms each. In some cases, the researchers were able to make simple grid patterns with crystals in areas as small as 8 hundred-millionths of a square inch (49 square microns). Although not nearly as packed as modern silicon processors or memory chips, with up to 13 million crystals per square inch, the team's patterns could still yield richly functioning circuits and high-resolution displays, Bao says.

In other experiments reported in the paper, the researchers showed that the transistor arrays printed on plastic continue to work well even after significant bending, a key finding for anything that will be used in flexible electronics.

Several further advances will be necessary before the team's progress translates into commercial technologies. Among them is controlling how the crystals line up across the electrodes when the crystals form. Another key step will be ensuring better electrical contact between crystals and electrodes.

Still, the results show that organic single-crystal transistors are now feasible for making a variety of useful devices. ''Until now, the possibility of fabricating hundreds of [organic single-crystal] devices on a single platform [had] been unheard of and essentially impossible from previous methods,'' says lead author Briseno. ''All of this can now be accomplished on an area the size of a human fingernail.''

The research was funded by a Bell Labs Graduate Research Fellowship, the Air Force Office of Scientific Research, a German research foundation fellowship, the National Science Foundation's Center on Polymeric Interfaces and Macromolecular Assemblies and the Stanford School of Engineering.


Story Source:

The above story is based on materials provided by Stanford University. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University. "Flexible Electronics Advance Boosts Performance, Manufacturing." ScienceDaily. ScienceDaily, 15 December 2006. <www.sciencedaily.com/releases/2006/12/061213175213.htm>.
Stanford University. (2006, December 15). Flexible Electronics Advance Boosts Performance, Manufacturing. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2006/12/061213175213.htm
Stanford University. "Flexible Electronics Advance Boosts Performance, Manufacturing." ScienceDaily. www.sciencedaily.com/releases/2006/12/061213175213.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins