Featured Research

from universities, journals, and other organizations

Internal Compass Of Immune Cell Discovered

Date:
December 18, 2006
Source:
University of California - San Diego
Summary:
Researchers at the UCSD School of Medicine have discovered how neutrophils -- specialized white blood cells that play key roles in inflammation and in the body's immune defense against bacteria -- navigate to sites of infection and inflammation. These findings could potentially lead to new treatments for serious infections and inflammatory diseases in patients.

Process by which neutrophils detect and migrate towards chemoattrants.
Credit: UCSD Medical Center

Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered how neutrophils -- specialized white blood cells that play key roles in inflammation and in the body's immune defense against bacteria -- navigate to sites of infection and inflammation. These findings could potentially lead to new treatments for serious infections and inflammatory diseases in patients.

Related Articles


The research, reported in the December 15, 2006 issue of the journal Science, describes the elements of the "internal compass" that neutrophils use to detect and migrate towards chemoattractants, markers of infection and inflammation that are released from bacteria and inflamed tissues.

"These findings solve the long-standing puzzle of how neutrophils find their way and move toward sites of injury or infection in the body," said senior author Wolfgang Junger, Ph.D., adjunct professor of surgery at UCSD Medical Center.

His team set out to identify the key mechanisms of signal amplification that must occur in order for neutrophils to detect the low-level activating signals (chemoattractants) sent out by bacteria at injury sites. They found that neutrophils possess a built-in amplification system that is an integral part of the internal compass the cells use to locate the source of chemoattractants. At the core of the amplification system is the chemical adenosine triphosphate (ATP).

The chain of events necessary to direct the neutrophils toward its goal begins when ATP is released from the region of the cell surface closest to the source of chemoattractants. Next, ATP binds to a nucleotide receptor called P2Y2 on the cell surface, a step critical to position the cells in the direction of the source of chemoattractants.

Once this internal compass has been activated, ATP is converted by the cells to adenosine, which in turn activates A3 adenosine receptors concentrated at the front of cells, providing the signal to move toward the source of chemoattractants.

Lead authors Yu Chen, M.D., UCSD postgraduate researcher in surgery and Ross Corriden, UCSD graduate student in biomedical sciences, found that when ATP receptors were blocked, the cells became disoriented, while blocking A3 adenosine receptors slowed down the cell movement toward chemoattractants. The researchers also found that drugs which interfere with the amplification system impair cell migration to inflamed tissues.

"These findings are very important because they suggest that novel classes of anti-inflammatory drugs could be developed to prevent rheumatoid arthritis, inflammatory bowel diseases, asthma, and many other chronic inflammatory diseases," said Junger.

Conversely, drugs that boost these amplification systems and the internal compass could be used to coax neutrophils to migrate to infected wounds to improve wound healing.

Co-authors contributing to the study were close collaborator Paul Insel, M.D., UCSD professor of pharmacology and medicine; Yoshiaki Inoue, M.D., and Naoyuki Hashiguchi, M.D., UCSD visiting scholars in surgery; Linda Yip, Ph.D., UCSD postgraduate research scientist in surgery; Annelies Zinkernagel, M.D., UCSD visiting scientist in pediatrics; and Victor Nizet, M.D., UCSD associate professor of pediatrics and pharmacy.

The study was funded by grants from the National Institutes of Health and the Department of Defense.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Internal Compass Of Immune Cell Discovered." ScienceDaily. ScienceDaily, 18 December 2006. <www.sciencedaily.com/releases/2006/12/061215091001.htm>.
University of California - San Diego. (2006, December 18). Internal Compass Of Immune Cell Discovered. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2006/12/061215091001.htm
University of California - San Diego. "Internal Compass Of Immune Cell Discovered." ScienceDaily. www.sciencedaily.com/releases/2006/12/061215091001.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Malnutrition on the Rise as Violence Flares in C. Africa

Malnutrition on the Rise as Violence Flares in C. Africa

AFP (Jan. 28, 2015) Violence can flare up at any moment in Bambari with only a bridge separating Muslims and Christians. Malnutrition is on the rise and lack of water means simple cooking fires threaten to destroy makeshift camps where people are living. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Poultry Culled in Taiwan to Thwart Bird Flu

Poultry Culled in Taiwan to Thwart Bird Flu

Reuters - News Video Online (Jan. 28, 2015) Taiwan culls over a million poultry in efforts to halt various strains of avian flu. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Media Criticizing Parents For Not Vaccinating Children

Media Criticizing Parents For Not Vaccinating Children

Newsy (Jan. 28, 2015) As the Disneyland measles outbreak continues to spread, the media says parents who choose not to vaccinate their children are part of the cause. Video provided by Newsy
Powered by NewsLook.com
Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins