Featured Research

from universities, journals, and other organizations

Unfolded Proteins May Protect Cells From Dying

Date:
December 28, 2006
Source:
Rockefeller University
Summary:
When proteins are not properly folded, cells become stressed to a point where they may die. But new research by Rockefeller University and HHMI scientists shows that a stress response pathway helps them cope with inhospitable environments, and it could lead to new therapies to fight disease.

Photoreceptor cells (red) in the developing eye of a fruit fly initiate an unfolded protein response (yellow) to help them cope with a stressful environment. Misfolded proteins are implicated in many diseases, including neurodegenerative diseases, diabetes and types of blindness.
Credit: Image courtesy of Rockefeller University

When cells get stressed, their proteins go unfolded. It's a reaction with a straightforward name: the unfolded protein response. Now, new research from Rockefeller University shows that this phenomenon actually serves a protective role; rather than a sign that the cell has given up, it may be a mechanism by which the cells cope with adversity. The findings were reported as an advance online publication in the EMBO Journal on the Dec. 14.

Diabetes, cancer, and neurodegenerative diseases including Huntington's and Parkinson's are linked to unfolded proteins. But Hermann Steller, head of the Strang Laboratory of Apoptosis and Cancer Biology at Rockefeller and a Howard Hughes Medical Institute investigator, focused on autosomal dominant retinitis pigmentosa (ADRP), which causes blindness. Unfolded proteins linked to ADRP accumulate in the endoplasmic reticulum, an organelle where proteins are manufactured and packaged for transport to the cell surface, unlike some other forms of the unfolded protein response that occur in the cell's cytoplasm.

To understand what impact the unfolded protein response had on the cell, Hyung Don Ryoo, a former postdoc in the Steller lab, used a protein called xbp1, whose mRNA is alternatively spliced when the cell is stressed and the unfolded protein response is activated. Ryoo rigged xbp1 with a fluorescent marker that would light up whenever this alternatively spliced version of xbp1 was made, allowing him to detect every time the cell initiated an unfolded protein response.

"Our work shows that the unfolded protein response is a protective pathway, and therapeutically this is the type of pathway you want to boost to protect cells from stress induced death," says Steller, who is the Strang Professor at Rockefeller.

What's more, the researchers found that only cells that had endoplasmic reticulum stress, not cytoplasmic stress, made the fluorescently tagged xbp1 protein.

"Many researchers had bunched the stress response of the cytoplasmic and endoplasmic reticulum proteins together," says Steller. "Though we are not saying there couldn't be any cross-communication between these two pathways, I think our results show that the situation is considerably more complex than had been previously appreciated. The cell really knows where the stress is coming from, and whether the unfolded protein response is initiated in the endoplasmic reticulum or in the cytoplasm."

Using the tools that Ryoo developed, Steller hopes that more aspects of the unfolded protein response pathway can be illuminated. While they found that the unfolded protein response initially protects retinal cells from death in the fly model of ADRP, the cells eventually die, leading to blindness. How the cell death pathway becomes activated is still a mystery, and Steller makes the point that although blocking cell death is a worthwhile therapeutic strategy, blocking it globally is not. Scientists still need to understand the specific proteins involved to create the most effective therapy.

"When it comes to avoiding cancer or defense against virally infected cells, cell death is a good thing," says Steller. "But when cells are stressed, and as a result are dying too easily, blocking the pathways that lead to the activation of cell death would be an ideal way to fight disease. Using this new technique, we can now go step by step down the pathway, not only identifying proteins that are functionally relevant to cell death, but also finding which will make the most attractive targets for pharmacological development."


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Cite This Page:

Rockefeller University. "Unfolded Proteins May Protect Cells From Dying." ScienceDaily. ScienceDaily, 28 December 2006. <www.sciencedaily.com/releases/2006/12/061226134744.htm>.
Rockefeller University. (2006, December 28). Unfolded Proteins May Protect Cells From Dying. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2006/12/061226134744.htm
Rockefeller University. "Unfolded Proteins May Protect Cells From Dying." ScienceDaily. www.sciencedaily.com/releases/2006/12/061226134744.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins