Featured Research

from universities, journals, and other organizations

Superbubble Of Supernova Remnants Caught In Act Of Forming

Date:
January 10, 2007
Source:
University of Illinois at Urbana-Champaign
Summary:
A superbubble in space, caught in the act of forming, can help scientists better understand the life and death of massive stars, say researchers at the University of Illinois at Urbana-Champaign.

These images show the "LHA 115-N 19" region in the Small Magellanic Cloud. This area hosts a number of massive stars, as well as three supernova remnants (marked in the top image). The amount of activity from massive stars in this region may eventually form a huge low-density cavity called a superbubble. Top: 3-color image showing emission in an optical hydrogen line taken at Cerro-Tololo Inter-American Observatory (red); radio data from the Australia Telescope Compact Array (green); and X-ray emission from the Chandra X-ray Observatory (blue). Bottom: 3-color image showing X-ray emission at different energies: low (0.3-0.8 keV) in red, medium (0.8-1.5 keV) in green, and high (1.5-8.0 keV) in blue. The X-ray images have been adaptively smoothed.
Credit: Photo courtesy Rosa Williams

A superbubble in space, caught in the act of forming, can help scientists better understand the life and death of massive stars, say researchers at the University of Illinois at Urbana-Champaign.

Related Articles


Found within the Small Magellanic Cloud -- a galactic neighbor of the Milky Way -- the large region of ionized hydrogen gas is designated "LHa115-N19," and "contains a number of massive stars and overlapping supernova remnants," said Rosa Williams, an astronomer at the U. of I. "We can tell there has been a fair amount of stellar activity going on."

From birth to death, massive stars have a tremendous impact on their surroundings. While alive, these stars generate stellar winds that push away nearby gas and dust, forming low-density cavities inside expanding bubbles. When the stars die, shock waves from their death throes can enlarge those bubbles into huge supernova remnants.

"In N19, we have not one star, but a number of massive stars blowing bubbles and we have several supernova remnants," Williams said. "Some of these cavities may overlap with one another. Eventually, these bubbles could merge into one enormous cavity, called a superbubble."

To identify the locations of massive stars, stellar-wind bubbles and supernova remnants in N19, Williams and colleagues combined optical images, X-ray data and spectroscopic measurements.

"We caught this particular region of N19 at a neat moment in time," Williams said. "The stars are just dispersed enough that their stellar winds and supernova blasts are working together, but have not yet carved out a full cavity. We are witnessing the birth of a superbubble."

The behavior of matter and energy within a superbubble has implications for the formation of planetary systems, said Williams, who will present her team's findings at the American Astronomical Society meeting in Seattle, on Tuesday (Jan. 9).

During its life and death, a massive star forges the heavy elements that enrich the interstellar medium and form planets. "Our own solar system may have formed within the confines of a superbubble," said Williams, who uses an analogy with people to help explain her interest in superbubbles.

"Some people live pretty independently in isolated country houses, while others live in large cities that require a centralized structure," Williams said. "In N19, we are looking at a possible bridge between an individual star living its life and dying its death, and a community of stars, where living and dying affects other stars and planets, and creates a structure around them."

Collaborators on the project with Williams are You-Hua Chu, Rosie Chen and Robert Gruendl at Illinois, and Sean Points and Chris Smith at the Cerro-Tololo Inter-American Observatory in Chile.

The work was funded by NASA and the Smithsonian Astrophysical Observatory.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Superbubble Of Supernova Remnants Caught In Act Of Forming." ScienceDaily. ScienceDaily, 10 January 2007. <www.sciencedaily.com/releases/2007/01/070109142252.htm>.
University of Illinois at Urbana-Champaign. (2007, January 10). Superbubble Of Supernova Remnants Caught In Act Of Forming. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2007/01/070109142252.htm
University of Illinois at Urbana-Champaign. "Superbubble Of Supernova Remnants Caught In Act Of Forming." ScienceDaily. www.sciencedaily.com/releases/2007/01/070109142252.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Space & Time News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Universe Could Be Full Of Tatooine Sunsets

The Universe Could Be Full Of Tatooine Sunsets

Newsy (Mar. 30, 2015) University of Utah researchers say mathematical simulations show small, rocky planets, like Tatooine from "Star Wars," can form in dual-star systems. Video provided by Newsy
Powered by NewsLook.com
What NASA Wants To Learn From Its 'Year In Space' Tests

What NASA Wants To Learn From Its 'Year In Space' Tests

Newsy (Mar. 28, 2015) Astronaut Scott Kelly and cosmonaut Mikhail Kornienko will spend a year in space running tests on human physiology and psychology. Video provided by Newsy
Powered by NewsLook.com
Raw: Astronauts Arrive at ISS for 1-Year Mission

Raw: Astronauts Arrive at ISS for 1-Year Mission

AP (Mar. 28, 2015) The capsule carrying a Russian and an American who are to spend a year away from Earth docked Saturday with the International Space Station. (March 28) Video provided by AP
Powered by NewsLook.com
Crew Starts One-Year Space Mission

Crew Starts One-Year Space Mission

Reuters - News Video Online (Mar. 28, 2015) Russian-U.S. crew arrives safely at the International Space Station for the start of a ground-breaking year-long stay. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins