Featured Research

from universities, journals, and other organizations

Small Molecule Offers Big Hope Against Cancer

Date:
January 17, 2007
Source:
University of Alberta
Summary:
Researchers at the University of Alberta have shown that a nontoxic molecule shrinks cancers tumors, including lung, breast and brain. The results of the research will be published in the journal Cancer Cell.

U of A researcher Dr. Evangelos Michelakis has shown that this tiny DCA molecule could make a difference in the battle against cancer.
Credit: Image courtesy of University of Alberta

DCA is an odourless, colourless, inexpensive, relatively non-toxic, small molecule. And researchers at the University of Alberta believe it may soon be used as an effective treatment for many forms of cancer.

Related Articles


Dr. Evangelos Michelakis, a professor at the U of A Department of Medicine, has shown that dichloroacetate (DCA) causes regression in several cancers, including lung, breast, and brain tumors.

Michelakis and his colleagues, including post-doctoral fellow Dr. Sebastian Bonnet, have published the results of their research in the journal Cancer Cell.

Scientists and doctors have used DCA for decades to treat children with inborn errors of metabolism due to mitochondrial diseases. Mitochondria, the energy producing units in cells, have been connected with cancer since the 1930s, when researchers first noticed that these organelles dysfunction when cancer is present.

Until recently, researchers believed that cancer-affected mitochondria are permanently damaged and that this damage is the result, not the cause, of the cancer. But Michelakis questioned this belief and began testing DCA, which activates a critical mitochondrial enzyme, as a way to "revive" cancer-affected mitochondria.

The results astounded him.

Michelakis and his colleagues found that DCA normalized the mitochondrial function in many cancers, showing that their function was actively suppressed by the cancer but was not permanently damaged by it.

More importantly, they found that the normalization of mitochondrial function resulted in a significant decrease in tumor growth both in test tubes and in animal models. Also, they noted that DCA, unlike most currently used chemotherapies, did not have any effects on normal, non-cancerous tissues.

"I think DCA can be selective for cancer because it attacks a fundamental process in cancer development that is unique to cancer cells," Michelakis said. "Cancer cells actively suppress their mitochondria, which alters their metabolism, and this appears to offer cancer cells a significant advantage in growth compared to normal cells, as well as protection from many standard chemotherapies. Because mitochondria regulate cell death--or apoptosis--cancer cells can thus achieve resistance to apoptosis, and this appears to be reversed by DCA."

"One of the really exciting things about this compound is that it might be able to treat many different forms of cancer, because all forms of cancer suppress mitochondrial function; in fact, this is why most cancers can be detected by tests like PET (positron emission tomography), which detects the unique metabolic profile of cancer compared to normal cells," added Michelakis, the Canada Research Chair in Pulmonary Hypertension.

Another encouraging thing about DCA is that, being so small, it is easily absorbed in the body, and, after oral intake, it can reach areas in the body that other drugs cannot, making it possible to treat brain cancers, for example.

Also, because DCA has been used in both healthy people and sick patients with mitochondrial diseases, researchers already know that it is a relatively non-toxic molecule that can be immediately tested in patients with cancer.

Furthermore, the DCA compound is not patented and not owned by any pharmaceutical company, and, therefore, would likely be an inexpensive drug to administer, Michelakis added.

However, as DCA is not patented, Michelakis is concerned that it may be difficult to find funding from private investors to test DCA in clinical trials. He is grateful for the support he has already received from publicly funded agencies, such as the Canadian Institutes for Health Research (CIHR), and he is hopeful such support will continue and allow him to conduct clinical trials of DCA on cancer patients.

"This preliminary research is encouraging and offers hope to thousands of Canadians and all those around the world who are afflicted by cancer, as it accelerates our understanding of and action around targeted cancer treatments," said Dr. Philip Branton, Scientic Director of the CIHR Institute of Cancer.

Michelakis's research is currently funded by the CIHR, the Canada Foundation for Innovation, the Canada Research Chairs program, and the Alberta Heritage Foundation for Medical Research.


Story Source:

The above story is based on materials provided by University of Alberta. Note: Materials may be edited for content and length.


Cite This Page:

University of Alberta. "Small Molecule Offers Big Hope Against Cancer." ScienceDaily. ScienceDaily, 17 January 2007. <www.sciencedaily.com/releases/2007/01/070116134001.htm>.
University of Alberta. (2007, January 17). Small Molecule Offers Big Hope Against Cancer. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2007/01/070116134001.htm
University of Alberta. "Small Molecule Offers Big Hope Against Cancer." ScienceDaily. www.sciencedaily.com/releases/2007/01/070116134001.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins