Featured Research

from universities, journals, and other organizations

'Optics On A Chip' May Revolutionize Telecom, Computing

Date:
February 7, 2007
Source:
Massachusetts Institute of Technology
Summary:
In work that could lead to completely new devices, systems and applications in computing and telecommunications, MIT researchers are bringing the long-sought goal of "optics on a chip" one step closer to market.

Illustration of MIT's solution to polarization sensitivity, which until now prohibited most real-world applications of 'optics on a chip.' (Graphic courtesy of Tymon Barwicz, MIT)

In work that could lead to completely new devices, systems and applications in computing and telecommunications, MIT researchers are bringing the long-sought goal of "optics on a chip" one step closer to market.

Related Articles


In the January 2007 inaugural issue of the journal Nature Photonics, the team reports a novel way to integrate photonic circuitry on a silicon chip. Adding the power and speed of light waves to traditional electronics could achieve system performance inconceivable by electronic means alone.

The MIT invention will enable such integrated devices to be mass-manufactured for the first time. And, depending on the growth of the telecom industry, the new devices could be in demand within five years, said co-author Erich P. Ippen, the Elihu Thomson Professor of Electrical Engineering and Physics.

The new technology will also enable supercomputers on a chip with unique high-speed capabilities for signal processing, spectroscopy and remote testing, among other fields.

"This breakthrough allows inter- and intra-chip communications networks that solve the wiring problems of today's computer chips and computer architectures," said Franz X. Kaertner, a professor of electrical engineering and computer science.

In addition to Ippen and Kaertner, other members of the MIT team are Tymon Barwicz (PhD 2005), Michael Watts (PhD 2005), graduate students Milos Popovic and Peter Rakich, and Henry I. Smith, professor of electrical engineering and co-director of MIT's Nanostructures Laboratory.

Molding light waves

Microphotonics technology aims to "mold" the flow of light. By using two different materials that refract light differently, such as silicon and its oxides, photons can be trapped within a miniscule hall of mirrors, giving them unique properties.

The stumbling block has been that microphotonics devices are sensitive to the polarization of light.

Light waves moving through optical fibers can be arbitrarily vertically or horizontally polarized, and microphotonic circuits don't work well with that kind of random input. This has meant that devices used in photonic subsystems and optical communication networks, for instance, couldn't connect to the outside world without often having to be assembled piecemeal and painstakingly by hand.

Like polarizing sunglasses, which use vertical polarizers to block the horizontally oriented light reflected from flat surfaces such as roads or water, the MIT method of integrating optics on a chip involves separating the two orientations of polarized light waves.

Splitting the difference

The MIT researchers' innovative solution involves splitting the light emanating from an optic fiber into two arms-one with horizontally polarized beams and one with vertical beams-in an integrated, on-chip fashion.

Setting these two at right angles to one another, the researchers rotated the polarization of one of the arms, also in an integrated way. The beams from the two arms, now oriented the same way, then pass through identical sets of polarization-sensitive photonic structures and out the other side of the chip, where the two split beams are rejoined.

"These results represent a breakthrough in permitting the processing and switching of arbitrarily polarized input light signals in tightly confined and densely integrated photonic circuitry," said Ippen. The innovation means that optical components can be integrated onto a single silicon chip and mass-produced, cutting costs and boosting performance and complexity.

The advantage in integrating optics with silicon technology is that silicon fabrication technology "is already highly developed and promises precise and reproducible processing of densely integrated circuits," Kaertner said. "The prospect of integrating the photonic circuitry directly on silicon electronic chips is ultimately also an important driver."

In addition to offering a breakthrough in polarization, the MIT chip also contains first-of-their-kind components in materials meeting telecommunications specifications.

"Our results illustrate the importance of academic research in nanofabrication and academia's role in breaking new pathways for the industry to follow," Smith said. "Creating these devices was only possible due to the unique nanofabrication facilities at MIT, enabling fabrication with extraordinary precision."

This work was supported by Pirelli Labs in Milan, Italy, and made use of MIT's Nanostructures Laboratory and MIT's Scanning Electron Beam Lithography Facility, both within the Research Laboratory of Electronics.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "'Optics On A Chip' May Revolutionize Telecom, Computing." ScienceDaily. ScienceDaily, 7 February 2007. <www.sciencedaily.com/releases/2007/02/070206095446.htm>.
Massachusetts Institute of Technology. (2007, February 7). 'Optics On A Chip' May Revolutionize Telecom, Computing. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2007/02/070206095446.htm
Massachusetts Institute of Technology. "'Optics On A Chip' May Revolutionize Telecom, Computing." ScienceDaily. www.sciencedaily.com/releases/2007/02/070206095446.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins