Featured Research

from universities, journals, and other organizations

Flowing Bubbles Mimic Computer: Work Could Boost Capabilities Of 'Labs On A Chip'

Date:
February 12, 2007
Source:
Massachusetts Institute of Technology
Summary:
In work that could dramatically boost the capabilities of "lab on a chip" devices, MIT researchers have created a way to use tiny bubbles to mimic the capabilities of a computer.

MIT researchers have developed a computer chip that runs on microbubbles like these.
Credit: Photo courtesy of Manu Prakash

In work that could dramatically boost the capabilities of "lab on a chip" devices, MIT researchers have created a way to use tiny bubbles to mimic the capabilities of a computer.

The team, based at MIT's Center for Bits and Atoms, reports that the bubbles in their microfluidic device can carry on-chip process control information, just like the electronic circuits of a traditional microprocessor, while also performing chemical reactions. The work will appear in the Feb. 9 issue of Science.

"Bubble logic merges chemistry with computation, allowing a digital bit to carry a chemical payload. Until now, there was a clear distinction between the materials in a reaction and the mechanisms to control them," said co-author Neil Gershenfeld, director of the Center for Bits and Atoms and associate professor of media arts and sciences.

Microfluidics allow scientists to create tiny chips where nanoliters of fluids flow from one part of the chip to another, undergoing controlled chemical reactions in different parts of the chip and replacing the conventional test tubes and glassware used for chemistry for centuries.

The technology has the potential to revolutionize large-scale chemical analysis and synthesis, environmental and medical testing and industrial production processes, but applications outside of the laboratory have been limited so far by the external control systems-valves and plumbing-required for its operation.

But now, the MIT researchers are able to control microfluidic chips via the interactions of bubbles flowing through microchannels, eliminating the need for external controls. "Now you can program what's happening inside the lab on a chip, by designing bubble logic circuits that function just like their electronic counterparts," said Manu Prakash, Gershenfeld's co-author and graduate student.

Controlling chemical reactions will likely be a primary application for the chips, according to the researchers. It will be possible to create large-scale microfluidic systems such as chemical memories, which store thousands of reagents on a chip (similar to data storage), using counters to dispense exact amounts and logic circuits to deliver them to specific destinations.

Other applications include combinatorial synthesis of many compositions at the same time, programmable print heads that can deposit a range of functional materials, and sorting biological cells.

The researchers modeled their new microfluidic chips on the architecture of existing digital circuits. But instead of using high and low voltages to represent a bit of information, they use the presence or absence of a bubble. They report on nitrogen bubbles in water, but any other combinations of materials that don't mix would work, such as oil and water.

In the Science paper they demonstrate all of the elements needed for any new logic family, including gates, memories, amplifiers and oscillators. The speed of operation is about 1,000 times slower than a typical electronic microprocessor, but 100 times faster than the external valves and control systems used in existing microfluidic chips. Gershenfeld and Prakash anticipate that its invention will allow existing circuit designs (and designers) to work in the domain of microfluidics.

The research was supported by MIT's Center for Bits and Atoms, an interdisciplinary initiative exploring the boundary between physical science and computer science, with funding from the National Science Foundation.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Flowing Bubbles Mimic Computer: Work Could Boost Capabilities Of 'Labs On A Chip'." ScienceDaily. ScienceDaily, 12 February 2007. <www.sciencedaily.com/releases/2007/02/070208230110.htm>.
Massachusetts Institute of Technology. (2007, February 12). Flowing Bubbles Mimic Computer: Work Could Boost Capabilities Of 'Labs On A Chip'. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2007/02/070208230110.htm
Massachusetts Institute of Technology. "Flowing Bubbles Mimic Computer: Work Could Boost Capabilities Of 'Labs On A Chip'." ScienceDaily. www.sciencedaily.com/releases/2007/02/070208230110.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins