Featured Research

from universities, journals, and other organizations

Study Reveals Structural Dynamics Of Single Prion Molecules

Date:
February 15, 2007
Source:
Scripps Research Institute
Summary:
Using a combination of novel technologies, scientists at the Scripps Research Institute and the Whitehead Institute for Biomedical Research have revealed for the first time a dynamic molecular portrait of individual unfolded yeast prions that form the compound amyloid, a fibrous protein aggregate associated with neurodegenerative diseases such as Alzheimer's disease and variant Creutzfeldt-Jacob disease -- the human version of mad cow disease.

Using a combination of novel technologies, scientists at the Scripps Research Institute and the Whitehead Institute for Biomedical Research have revealed for the first time a dynamic molecular portrait of individual unfolded yeast prions that form the compound amyloid, a fibrous protein aggregate associated with neurodegenerative diseases such as Alzheimer's disease and variant Creutzfeldt-Jacob disease -- the human version of mad cow disease.

The new findings, which are being published the week of February 12 in an online edition of the Proceedings of the National Academy of Sciences, offer significant insights into normal folding mechanisms as well as those that lead to abnormal amyloid fibril conversion. The new insights may lead to the discovery of novel therapeutic targets for neurodegenerative diseases.

Intriguingly, certain prions and amyloids can play beneficial roles. The subject of the new study, Sup35, enables protein-based inheritance in yeast. When this prion protein misfolds, it converts into self-perpetuating amyloid fibrils, thus altering its function in an inheritable manner. The research team used a combination of advanced biophysical methods to investigate these processes.

"By focusing on single unfolded prions, we were able to define the dynamics of two distinct regions or domains that determine conversion dynamics," said Ashok A. Deniz, a Scripps Research scientist who led the study. "Our research techniques can now be used to probe the structures of other amyloidogenic proteins. This could prove important in understanding the basic biology of amyloid formation, as well as in designing strategies against misfolding diseases."

Interestingly, the new study revealed that yeast prion protein Sup35 lacks a specific, static structure in its native collapsed state. Instead, the compact protein fluctuates among several different structures before forming intermediate shapes during the amyloid assembly process.

The intermediate stages of the process are critically important, Deniz noted: "No single native unfolded protein is capable of initiating the amyloid cascade because of this constant shape-shifting. To start the amyloid conversion process, it has to first convert to an intermediate species, consisting of multiple protein molecules. This insight may be important to finding potential new therapeutic targets for disease-causing amyloids."

To define the dynamic structural details of individual prions, Deniz and his colleagues employed several novel technologies including single-molecule fluorescence resonance energy transfer (SM-FRET) and fluorescence correlation spectroscopy (FCS).

Fluorescence resonance energy transfer is a highly sensitive tool used to measure molecular structure and dynamics such as in single proteins at the angstrom level, a measurement unit used to define molecular distances (a 10th of a millionth of a millimeter). Fluorescence correlation spectroscopy is a high resolution technique that measures time fluctuations in fluorescent emissions from tagged proteins, which provided information about changes in shape of Sup35 taking place on the nanosecond timescale (billionths of seconds).

A third technology, single molecule fluorescence coincidence, was used in an unusual way-to prove that the protein species under scrutiny were not oligomeric (consisting of multiple proteins in an aggregate). The technology, based on measuring fluorescence bursts from individual tagged proteins, enabled the scientists to determine that the proteins being studied were, in fact, single monomers and not aggregates.

Deniz said that future work with yeast prion mutants might resolve some of the questions that remain unanswered. "Our laboratory has spent a great deal of time in improving these techniques, and we have used them to uncover some very intriguing information about this particular monomer," he said. "This combination of techniques can now be used to study other amyloidogenic proteins, including prions, particularly small assemblies and intermediate stages of the aggregation process. These are currently considered the most toxic forms of amyloid-disease associated proteins."

While mammalian prion proteins are different from those of yeast in their amino acid sequence, they do share some basic features, including their ability to catalyze the conversion to amyloid fibers. Some studies suggest that prions may also play key roles in certain critical processes such as long-term memory. Other authors of the study, A Natively Unfolded Yeast Prion Monomer Adopts An Ensemble of Collapsed and Rapidly Fluctuating Structures, are Samrat Mukhopadhyay and Edward A. Lemke of The Scripps Research Institute; and Susan Lindquist and Rajaraman Krishnan of the Whitehead Institute for Biomedical Research.

The study was supported by the National Institutes of Health, The DuPont-MIT Alliance, and the Alexander von Humboldt Foundation.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Scripps Research Institute. "Study Reveals Structural Dynamics Of Single Prion Molecules." ScienceDaily. ScienceDaily, 15 February 2007. <www.sciencedaily.com/releases/2007/02/070212182836.htm>.
Scripps Research Institute. (2007, February 15). Study Reveals Structural Dynamics Of Single Prion Molecules. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2007/02/070212182836.htm
Scripps Research Institute. "Study Reveals Structural Dynamics Of Single Prion Molecules." ScienceDaily. www.sciencedaily.com/releases/2007/02/070212182836.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins