Featured Research

from universities, journals, and other organizations

Breakthrough In Understanding Type-2 Diabetes As Key Genes Identified

Date:
February 13, 2007
Source:
Imperial College London
Summary:
The most important genes associated with a risk of developing type-2 diabetes have been identified, scientists report in a new study. The research, published online in Nature, is the first time the genetic makeup of any disease has been mapped in such detail. It should enable scientists to develop a genetic test to show an individual their likelihood of developing diabetes mellitus type 2, commonly known as type-2 diabetes.

The researchers looked for mutations in the building blocks, called nucleotides, of DNA. They examined over 392,000 of these mutations to find the ones specific to type-2 diabetes.
Credit: Image courtesy of NIH/National Human Genome Research Institute

The most important genes associated with a risk of developing type-2 diabetes have been identified, scientists report in a new study.

Related Articles


The research, published online in Nature, is the first time the genetic makeup of any disease has been mapped in such detail. It should enable scientists to develop a genetic test to show an individual their likelihood of developing diabetes mellitus type 2, commonly known as type-2 diabetes.

The researchers identified four loci, or points on individuals' genetic maps, which corresponded to a risk of developing the disorder. The scientists, from Imperial College London, McGill University, Canada, and other international institutions, believe their findings explain up to 70% of the genetic background of type-2 diabetes.

In addition, one of the genetic mutations which they detected might further explain the causes behind type-2 diabetes, potentially leading to new treatments. The research revealed that people with type-2 diabetes have a mutation in a particular zinc transporter known as SLC30A8, which is involved in regulating insulin secretion. Type-2 diabetes is associated with a deficiency in insulin and the researchers believe it may be possible to treat it by fixing this transporter.

Professor Philippe Froguel, one of the authors of the study from the Division of Medicine at Imperial College London, said: "If we can tell someone that their genetics mean they are pre-disposed towards type-2 diabetes, they will be much more motivated to change things such as their diet to reduce their chances of developing the disorder. We can also use what we know about the specific genetic mutations associated with type-2 diabetes to develop better treatments."

The scientists reached their conclusions after comparing the genetic makeup of 700 people with type-2 diabetes and a family history of the condition, with 700 controls. They looked at mutations in the building blocks, called nucleotides, which make up DNA.

There are mutations in around one in every 600 nucleotides and the scientists examined over 392,000 of these mutations to find the ones specific to type-2 diabetes. The mutations are known as single-nucleotide polymorphisms.

The researchers confirmed their findings by analysing the genetic makeup of a further 5,000 individuals with type-2 diabetes and a family history of the disorder, to verify that the same genetic mutations were visible in these individuals.

Professor David Balding, co-author on the study from Imperial's Division of Epidemiology, Public Health and Primary Care, said: "Until now, progress in understanding how genes influence disease has been painfully slow. This study is one of the first large studies to report results using the new genome-wide technology that governments and research charities have invested heavily in during the past few years.

"Our research shows that this technology can generate big leaps forward. The task now is to study the genes identified in our work more intensively, to understand more fully the disease processes involved, devise therapies for those affected and to try to prevent future cases," he added.

This work was funded by Genome Canada, Genome Quebec, and the Canada Foundation for Innovation. Cohort recruitment was supported by the Association Francaise des Diabetiques, INSERM, CNAMTS, Centre Hospitalier Universitaire Poitiers, La Fondation de France and industrial partners.


Story Source:

The above story is based on materials provided by Imperial College London. Note: Materials may be edited for content and length.


Cite This Page:

Imperial College London. "Breakthrough In Understanding Type-2 Diabetes As Key Genes Identified." ScienceDaily. ScienceDaily, 13 February 2007. <www.sciencedaily.com/releases/2007/02/070213102944.htm>.
Imperial College London. (2007, February 13). Breakthrough In Understanding Type-2 Diabetes As Key Genes Identified. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2007/02/070213102944.htm
Imperial College London. "Breakthrough In Understanding Type-2 Diabetes As Key Genes Identified." ScienceDaily. www.sciencedaily.com/releases/2007/02/070213102944.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins